
UNIVERSITY OF HOUSTON
UNIVERSITY COMPUTING CENTER

HOUSTON, TEXAS 77004

B Reference Manual

Table of Contents

0. Introduction. 1
1. Basic symbols 2

1.1. Identifiers • • • • ■ . . « . • • • • • • . • • 3
1.2. Comments 3
1.3. Keywords 3
1.4. Constants 3

1.4.1. Decimal constants. 4
1.4.2. Octal constants. 4
1.4.3. Floating point decimal constants 4
1.4.4. ASCII character constants. 4
1.4.5. BCD character constants. 4
1.4.6. String constants 5
1.4.7. Escape sequences 5

1.5. Source file inclusion 6
1.6. Compiler directives 6

2. The building blocks of a B program 7
2.1. Manifest constants 8
2.2. External definitions 9
2.3. Function definition 12

3. Statements . 14
3.1. Null statement14
3.2. Expression statement14
3.3. Storage declaration 15

3.3.1. Storage types. 15
3.3.2. Extrn. 16
3.3.3. Auto.16
3.3.4. Labels17

3.4. Transfer of control17
3.4.1. Goto. 17
3.4.2. Return 18
3.4.3. Break. 18
3.4.4. Next 18

3.5. Conditional statement • . . 18
3.5.1. If 18

3.6. Iterative statements19
3.6.1. Repeat19
3.6.2. While.20
3.6.3. Do-while20
3.6.4. For.20

3.7. Switch statement 21
4. Expressions23

4.1. Primary expressions23
4.1.1. Subscripting24
4.1.2. Function calls • • . 24

4.2. Rvalues and lvalues « . . • 25

September 1978 - i - Waterloo

4.3. Unary operators 26
4.4. Binary operators 28
4.5. Shift operators 28
4.6. Bitwise and29
4.7. Bitwise exclusive or 29
4.8. Bitwise or 29
4.9. Multiplicative operators - . 29
4.10. Additive operators30
4.11. Relational operators30
4.12. Logical and31
4.13. Logical or31
4.14. "Query" operator31
4.15* Assignment operators • 32

5. ImpI ementation-depen dent information33
5.1. Linkage conventions33

5.1.1. Function call.33
5.1.2. Entry. . • . • • « . • • . • • • • . • • • 33
5.1.3. Exit.. - - . 34

5.2. Internal representation of objects 35
6. The B library35

6.1. .BSET - redirection of i/o 36
6.2. Introduction to input/output 37

6.2.1. Units............................. 37
6.2.2. Unit opening 38
6.2.3. Unit closing 40
6.2.4. Unit switching • 41

6.3. Sequential stream i/o41
6.3.1. Terminal vs. file. 42
6.3.2. Stream i/o functions 43

6.4. Random file i/o • . • • . . • . • . . • • « . ♦ 46
6.5. String operations 46

6.5.1. "Random" string processing47
6.5.2. Sequential string access 47
6.5.3. String utilities 48

6.6. Storage allocation • . 49
6.7. Media conversion49
6.8. Call fortran. 50
6.9. DRLs and MMEs 50

7. Using B 51
7.1. CompiIing/running/debugging 51
7.2. Compi ler / loader interface 53
7.3. Using tabs for readability54
7.4. Some pitfalls • • « . . • . • . . . • . . . « • 54

Appendix A - Escape sequences • 56
Appendix B - Binding strength of operators. 57
Appendix C - Common error messages.57
Appendix D - Index of B library routines. 61

Waterloo i i September 1978

User’s Reference to 8 for Honeywell Series 6000/66

By R.P• G u r d

University of Waterloo/

Waterloo/ Ontario# Canada*

This manual describes the programming language 8
accepted by the compiler written at the University of
Waterloo by R* Braga* It also introduces the runtime
package written at the University of Waterloo# largely by
T. J * Thompson.

A derivative of BCPL# 8 was designed and first
implemented by D.M* Ritchie and K.L* Thompson# of Bell
Telephone Laboratories# Inc*# Murray Hill# N*J* The original
implementation of the runtime package is due to S*C.
Johnson# also of Bell Labs.

The present version of the compiler differs from the
original by incorporating an expanded SWITCH statement#
adding floating point operators# adding proper logical
operators# and altering the order of evaluation of
operators*

The runtime package works in both TSS and batch and
will read almost any "media code" found in the GCOS
environment* It uses EIS instructions whenever it is
appropriate* Note that the language itself has no
constructs for input/outputJ all i/o is done by function
calls*

8 is a language# in which the compiler always
assumes the type of a variable is suitable to the QP££al2£
acting upon it. 8 has a large set of operators# providing
integer# bitwise# logical and floating point operations.

The machine word is the basic unit of computation* The
word size on the Honeywell Series 6000/66 machines is 36
bits.

A B program consists of procedures called iyn^ijgn^*
Any function may call another function or# since local
variables are allocated on a stack# call itself recursively*
All functions may selectively access a global pool of
£xi££D51i.

o» «n» -«=» «■ <■*»

Copyright (c) 1978# University of Waterloo.

Septembe r 1978 1 Waterloo

A function is composed of a set of one or more
Sialgm£QX^. A statement is composed of permissible
combinations of k£.XW2£d5 and £iU£££Si2DS.

Although this is a reference manual/ and definitely not
a tutorial/ it is organized such that you will often find
examples which involve material covered later on. This is
intentional. Such examples should be ignored at first
reading/ but will hopefully be beneficial when you refer to
the manual again.

You should try to keep your first efforts at B
programming as simple as possible/ in order to minimize the
difficulties you may encounter. If you are ever unsure of
some feature of the language or run-time package/ try it out
by writing and running a simple little program which
exercizes only that feature. The time you take to do so may
save you a lot of trouble in the long run.

Before starting on your first major B program/ you
would be well advised to have a close look at the source
code of a well-written B program or two in order to get some
idea of exactly how things are done.

1- Ba sit symbols-

B is very much oriented towards use of the ASCII
character set in which each character occupies nine bits
(four characters per word). There is support for
representing character constants in the BCD character set/
in which one character occupies six bits (six characters per
word) .

Certain characters/ such as ’{’ or *}•/ do not appear
on some terminal keyboards. Escape sequences for these are
defined in Appendix A.

The compiler treats its input as an unbroken stream of
characters. Any form feed/ tab or newline character is
converted to the space character/ except when it occurs
inside a string or character constant. Newlines are
counted/ so the compiler can tell you on what line it
detected an error. Line length may be arbitrary. The
compiler knows nothing about any "sequence field"/ such as
is supported by certain card-oriented compilers.

Line-numbered source files are permitted. If the first
character of a line is a digit/ the compiler assumes the
program being compiled has line numbers. If so/ on each
line of the file/ it attempts to form a line number by
collecting numeric characters until a non-numeric character
is found. The number is used in error messages pertaining to
that line.

Waterloo 2 September 1978

1.1. Identifiers.
An identifier or name is formed from the characters

a-zz A-Zz 0-9z underscore or dot (‘.’)z and must begin
with a non-di g i t.

Names may be arbitrarily long, but only the first eight
characters are significant. For external names or external
referencesz only the first six characters are significantz
due to the restriction imposed by the GCOS and TSS loaders.

Normallyz the compiler ignores case distinctionsz so
that the identifiers " SUM"z "sum” and "Sum" would be
considered to be the same thing. You may specify an option
to the compile command which forces the compiler to respect
case distinctionsz but then all keywords must appear in
lower case.

1-2- ifimmSQiS.
The beginning of a

appearance of a ”/★” in the
the first occurrence of a
lines later. For example/

comment is signalled by the
input stream. It is ended with
•• * / " any number of characters or

/ *
* this is a c omment
* /

Comments may not be nested

1.5.
B uses 15 keywordsz which may be categorized as

follows:
1) identifier scope keywords:

AUTO EXTRN
2) execution flow control keywords:

IF ELSE FOR WHILE REPEAT SWITCH DO
3) transfer keywords;

RETURN BREAK GOTO NEXT
4) switch statement keywords:

CASE DEFAULT

The compiler does not allow you to use any keyword as an
identifier. In particularz beware of inadvertently using
"next" as an identifier.

I.&. IcDJianis-
You may define octal/ decimalz floating pointz ASCII

characterz BCD character/ or string constants in your
program. The form of a constant is we I I-definedz in that it
is possible to unambiguously differentiate between the
various types of constants.

September 1978 - 3 Waterloo

1-4-1- £££22)21 £2£Si2D£S.
A decimal constant consists of an integer number/ which

may not contain leading zeroes. For example/

25 4737 981 32

1-4.2- $£121 £QDS12Di.S.
An octal constant consists

preceded by a zero and formed
through seven. For example:

01 077 026 0400000

of an integer number/
only from the digits zero

0777777777777

1-4-i. fl2£ijng £^101 detimal ££n$lanl2.
A floating-point constant is any number containing a

decimal point. It must not begin with a decimal point/ but
may have leading zeroes and may be followed by the letter
’e' and a possibly signed integer exponent. Examples:

3.2 1. 0.5 1.e5 3.e5 4.987e-2

1.4.4- 45£11 £tl££.i££££ £2011^015.
An ASCII character constant consists of from one to

four characters inside single quotes. The result is a word
which contains the internal form of the ASCII characters/
right-adjusted and left-padded with zero bits. Some
examples:

’a* ’a b c * * a be d *

The
and

c o m p i I e r
issues an

counts characters inside character constants
error message if there are more than four.

1-4-1- S£D £h2£2£l££ £2DSlaoX£.
A BCD constant consists of from one to six characters

enclosed by grave accent characters. The result is a word
containing the characters transliterated to BCD# right
justified/ and left-padded with zero bits. Characters which
do not have an exact equivalent in the BCD set are converted
to BCD blanks. Here are three examples of BCD constants:

a ’ot* *123456

If your terminal does not have a grave accent character you
may alternately alternately write a BCD constant like an
ASCII character constant/ except preceded by a dollar sign/
as in

$’a ' $' ot' $' 1 23456'

Note that the runtime package provides functions to
trans I iterate between ASCII and BCD and that the i/o
function PRINTF will take a BCD format specification.

Water loo September 1978

SiLlng £Qn£XanXs.
A string constant is any string of characters enclosed

in double quotes* For example:

’’this is a string”
tf 99

"the above is the null string"

When processing a string# the compiler packs the characters
of the string four per word and always appends one extra
character# an ASCII null <000)# to mark the end of the
string.

The yalus of a string is quite different from the other
types of constants. The value of a floating-point# octal#
decimal or character constant is a word containing the
internal representation of the given constant. The value of
a string constant is a word containing a fifiicXfir to the
string in the lower 18 bits.

In constructing the string# the compiler gobbles all
characters it sees# translating escape sequences if
necessary# until it finds a closing# unescaped double quote.
The rule which says tabs and form feeds are ignored does
not# of course# apply in this case# but real newlines (as
opposed to escaped newlines) are treated specially. If a
real newline is preceded by a ’*’# both and newline are
thrown away# so you can enter a very long line. If the
newline is not preceded by a ’*’# it is kept# but a warning
message is issued# on the grounds that you probably forgot
the closing string quote. To get a newline in the string
without drawing a warning# use the escape '*n*.

Escape sequences# beginning with the character '*’# are
defined to allow you to use# in a string or character
constant# characters which would otherwise be inconvenient
or impossible to enter. For example# if you wanted to place
a double quote inside a string constant# you would use the
escape *". The special end-of-string character (ASCII null)
is escaped as '*0*. The newline character is escaped as
'*n’. A newline is taken as a carriage return and a line
feed when output to a terminal. Arbitrary nine-bit
characters can be generated with "*#nnn"# where nnn is one
to three octal digits. The complete set of escape sequences
is given in Appendix A.

September 1978 5 Waterloo

1.5. Semis ills andysifiQ.
If the compiler encounters in the source program a line

of the form

X f iIena m e

it suspends processing of the current file and begins
collecting input from the specified file. When end~of~file
is encountered in the included file/ processing in the
original file resumes at the next line following the file
inclusion request. Such included files may themselves
contain ’"/filename" requests pointing to other files.

The ’X* character must be the first character on the
line/ not just the first non-blank character. If the line
has a line number/ the fX* must immediately follow the line
number.

The file name given may be in any of the forms
acceptable in the TSS environment/ such as

X t emp
X/ma i n.b
X fbagg i n s/d i f.b
Xfbaggins/s/dif.b
010Xfbaggins/s/dif.b

This allows you to keep parts of a large module broken
up into easily manageable files/ while retaining the ability
to compile the files together. File inclusion is also often
used to bring in a file of manifest definitions/ such as TSS
Derail equivalences/ which a variety of possibly unrelated
programs might find useful.

Any line whose first character is a is assumed to
be one of the compiler directives shown below. In each
case/ "<text>" denotes a string of characters which begins
with any non*blank character.

//title <text>

will place "<text>" in the
written from the time

comments field of any $ OBJECT
the directive is enc ount er ed.

I b I <text>

will place ”<text>”/ truncated to eight characters if
necessary/ in the ’’deck name” field of any $ OBJECT or $
DKEND card written from the time the directive is
encountered. If this directive has not been encountered
when it comes time to generate an object deck/ then the
current file name is used instead.

#111 da t <te x t >

Wat er loo 6 September 1978

After being
"< t ex t >" is
OBJECT card
encountered.

truncated to
used to fill
written from

six
in the
the

characters
"ttl" date

time the

if necessary/
field of any $
directive is

//copyright <t ex t >

is taken as comments.
Here is an example of the use of all four directives:

#t i 11e tss login subsystem - .tslog
tf I b I tlga
Z/ttldat 771209
//copyright (c) by the University of Waterloo/ 1977

2- The twilling fii S B

A complete 8 program consists of at least one/ but
usually many/ modules. A "module" is any of the following:

1) a manifest constant identifier definition

2) an external (global) variable definition.

3) a function body definition.

Modules may appear/ and the different types interspersed/ in
any order at all/ with the sole proviso that the definition
of a manifest identifier must appear before the identifier
is first used.

Manifest definitions are used to associate a name with
a compile time constant.

External definitions are used to create a global pool
of possibly initialized identifiers. This pool might be
used to declare large blocks of memory/ or to declare
identifiers that must be accessible to more than one 8
function. Since an external is global in scope/ any B
function may use it/ but only after declaring its intention
to do so in an EXTRN statement.

A function definition is used to declare a component of
the executable code of the program. The definition includes
the name the function will be called by/ the arguments it
will be called with/ and the statements which define what it
will reference and what it will do.

September 1978 7 W at er Ioo

Z.l- Manliest sQQtiaQts.
A manifest constant has the general form

name = text;

where ’’name" is any valid identifier and "text" is the
collection of characters between the equals sign and the
semi-colon.

When a manifest is defined/ the compiler enters the
identifier in a symbol table associating it with the "text"/
which it keeps in an internal buffer. Absolutely no
processing of the ’’text” is done at the time of definition.

When the compiler reads an identifier/ it first checks
to see if the identifier is a manifest. If so# the action
taken is to substitute the text of the manifest for the
identifier. For this reason/ it is not possible to speak of
redefining a manifest and any inadvertent attempt to do so
will usually result in a syntax error. Substitution
effectively takes place belQ££ the syntax analyzer scans the
line. Manifests may be used anywhere# including inside later
manifest definitions.

Because the compiler does not analyze the text of the
manifest until substitution takes place# it is possible for
the text to refer to a manifest which is defined after it#
as long as the definitions of both appear before the first
use.

The use of manifests has no effect on the order of
expression evaluation. For example# look at the definitions

A = 1;
B = A + A ;
C = B * B ;

When MC" is used somewhere else in the program# the compiler
will actually get ”1+1*1+1”# which will be evaluated as
three and not four# as one might mistakenly assume.

The compiler permits nesting up to 10 levels deep of
manifests inside other manifests.

Normally# however# you will find manifests quite
natural to use. Here are some examples of manifests:

VECSIZE =63;
vec E VECSIZE J ;

for(i = 0; i <= VECSIZE; ++i) sum + = vectij;

The manifest "vecsize" is used to establish the size of the
vector "vec" at compile time# and later used to control
iteration in a FOR statement.

Waterloo 8 September 1978

/* binary list structure */
NULL = -1; EMPTY = 0;
CONTENTS = 0;
LEFT_PTR = 1;
RIGHT.PTR = 2;

printreel ptr)
i f (ptr != NULL)

<
print reel LEFT_PTRCptr]);
print_contents< CONTENTSCptr3
printreel RIGHT_PTRCptr3):

/* end printree */

Here# manifests are being used to make the code involved in
traversing a binary tree more meaningful. Manifests are
often used in this way to give names to the elements of a
structure/ which may be an array of fixed size/ or a
dynamically allocated block of storage.

A common convention/ used in program examples* is to
differentiate manifest identifiers from other identifiers by
always showing the manifest identifier in upper case/ and to
show all others in lower case. It is also considered good
practice to group all manifests for a program together at
the beginning of the source code.

£iX££n^i dslXollifios.
We will first look at the possible forms of external

definitions* then look at several examples.
If an external is defined and possibly initialized in

more than one place* the first one encountered during
loading is the one which is used.

These are the possible forms of external definitions:

name;
A single word is allocated and initialized to zero.

name < ival } J
Name is defined as a single word and initialized with the
single value ival.

ma y be any legal constant expression* in which
case name has the value of its result. A constant
expression may be either a string constant or an
expression formulated with any legal combination of
numeric or character constants* binary operators* unary
operators and parentheses* following the rules in the
chapter on expressions. Alternatively* ival may be a
name* in which case the value of the ival is a word
containing* in the lower 18 bits* the address of the name
given as the ival. A function name may be used.

name < ival*
Al locates

ival*
space for as many words as there are ivals.

September 1978 9 Waterloo

This is in effect a vector which does not have a word set
aside as a pointer to it# its address is "&name"# rather
than just "name"/ which in this case refers to the first
ival. This is the way a vector is set up in FORTRAN# but
is not the same as a B vector.

name C const-expr] i
This is the first of several forms of B vector
declarations. Name is defined as a pointer to a vector
whose length is a number of words which is the value of
the constant expression plus one (since all B vectors
start subscripting at zero). The zeroth element of the
vector is initialized to zero/’ the initial contents of
the remaining cells are undefined.

The £2DSt~£XC£ in brackets may be any expression
which is a legal combination of numeric or character
constants# unary operators# binary operators and
parentheses. It is up to you to make sure the value of
the expression is reasonable# since the compiler‘s
grammar lets it accept things like floating point
constants and negative numbers# which give absurd
results. For all practical purposes# ’’const-expr" must
be such that it gives an integer result.

name C] < ival# ival# ... > J
Name is defined as a pointer to a vector whose length is
the number of initial values.

name C const-expr] < ival# ival# ... > #
Name is defined as a pointer to a vector whose length is
the maximum of the result of the constant expression plus
one and the number of initial values. The contents of
those elements of the vector which do not have
corresponding initial values are undefined.

Vectors de cl ared
are always allocated so
immediately follows the

as externals (or as AUTO variables)
that the zeroth word of the vector
word containing the vector pointer.

For compatibility with a
compiler# B also accepts an ival
surrounded by braces. In this
permit a constant expression to
character or string constant
numeric constant may be prefixed
sign.

previous version of the
or ival list which is not
case# the compiler does not
appear. Only a numeric#
is acceptable# although a
by an integer unary minus

Waterloo 1 0 September 1978

Here are some examples of external definitions:

a < 10 >;
One word of storage
decimal constant 10 and

is allocated* initialized to the
associated with the name "a”.

b £] < ' a b ’ / ’ c d e' z ' f g h i * > ;
One word is associated with the name "b" and initialized
with a pointer to a vector of three words. The first
element of the vector? referred to as b£0]* is
initialized with the character constant 'ab’ . The other
two elements* bC1 and b£2J* are initialized with ’cde‘
and 'fghi’* respectively.

c < ’ a b ’ * ’ a b c ’ > i
"c" is defined and associated with a word containing
’ab’. The word immediately following is initialized to
the constant 'abc'* but is not associated with any name.
This is in effect a vector which does not have a word set
aside as a pointer to it.

dC63J;
Defines " d "
pointer to
initialized

and associates
a vector of

to zero.

it with a word containing a
64 words* each of which is

e £ 1 0 J < a* b* c * d };
Declares " e " and associates it
Words zero* one* two and three
addresses of the externals
respectively. The contents of
undef ined.

with a vector of 11 words,
are initialized with the
"a"* "b"* "c" and ”d"*
the remaining elements are

f < "a string” >;
This is the usual way of defining an external string with
an initial value. "f" is defined and initialized with a
pointer to the storage occupied by the string constant "a
string".

g£3 < "pasc a I/Iibrary"* "pascaI/compiler"* -1
This sets up a vector of strings with an end marker.
Defines "g" and associates it with a word containing a
pointer to a vector of three words. The cell ”g£0]" is
initialized with a pointer to the storage occupied by the
string constant "pascal/library". The cell "g£1J" is
initialized in a similar manner* while "g£2J"* the last
element of the three-word vector* is initialized to the
decimal constant -1.

8 does not allow you to explicitly declare arrays with
more then one dimension. Usually if you need more than one
dimension* you build it at run time by calling the library
function GETMATRIX* which will obtain storage* construct the
necessary edge vectors and return a pointer to the array.
However* in spite of the fact that you cannot declare such
an array* it is possible to construct one as an initialized

September 1978 11 Waterloo

external! The secret is that any ival (inside braces) may
be replaced by an ival or ival list surrounded by braces.
The compiler then constructs the ival list and places a
pointer to it in the original ival list. The maximum
nesting depth is seven. For example/

x[]<
< 00/ 01/ 02 >/
< 10/ 11/ 12 }/
< 20/ 21/ 22 }

In this case/ "x" ends up being initialized as a pointer to
a vector containing three pointers. Each pointer points to a
vector of three words. In an expression/ the value of
" x C 0] " is a pointer to the first vector of three words/
while the value of "xC1JC2J" is 12.

2*3. Fynilien delidiicD.
3 functions serve a purpose similar to the subroutine

in FORTRAN or the procedure in ALGOL. The mechanism of the
function call involves very little cost in overhead and
permits recursion.

A working B program always contains at least one
function/ called MAIN/ and usually others/ since the
language is designed to encourage modular or structured
programming.

The general form of a function definition is

n a m e (argh a r g 2 z ...) s t a t ement

The name must be a valid identifier and is automatically
defined as an external by the compiler.

The formal arguments consist of a possibly empty list
of identifers separated by commas. Each argument is
implicitly declared as an automatic (local) variable and
storage for it is allocated on the runtime stack frame.
Note that/ although you may not declare a vector as a formal
argument/ you can always use an argument in a subscripting
operation/ as if it were a vector pointer.

"Statement" defines what actions the function will
take. Most often/ it is a compound statement/ consisting of
a set of statements enclosed by braces. The rules for
formulating statements are presented in the next chapter.

When writing the code for a function/ there are a few
things you should keep in mind.

The caller will always pass its arguments strictly bx
xalue« This means that altering an argument has no effect
on the state of the caller. However/ if an argument is a
B22Qt££* you can change the state of the caller by
indirecting through the pointer using either the unary
indirection operator or subscripting.

The function may at any time return a one word value

Waterloo 12 September 1978

using the RETURN statement. The caller and the callee do
not have to agree on whether or not a value is returned. If
a value is returned/ but not expected/ the value is ignored.
If a value is expected# but not returned# the value is
unde f i ned.

A function can determine the actual number of arguments
it is called with by invoking the library function NARGS.
For instance# the statement

x = n a r g s () /

would assign to the variable ”x" the number of arguments
supplied to the current invocation of the function.

The availability of NARGS lets you write functions
which may take a variable number of arguments. Most of the
time# this means that such a function is called with fewer
arguments than are defined for it# in which case one of the
first things such a function does is to establish default
values for the arguments it does not have.

The other case# in which a function is called with more
arguments than are defined for it# is somewhat trickier# and
should be avoided# unless you know precisely what you are
doing.

The function called MAIN is the entry point to your
program from the B runtime initialization routine. If not
present# the TSS loader prints the message:

ma i n unde f i ned

For details
the chapter on the

on how your main function
run time Ii b ra ry.

is invoked# see

September 1978 1 3 Waterloo

Statements are used to define the actions taken by a B
function. They may aopear only in the body of a function
definition. In certain cases, the definition of a statement
is recursive, in that a statement may appear inside a
statement. In this chapter, you will see that in many
cases, one may use an expression in a statement. Since the
rules for formulating expressions are discussed in the next
chapter# we merely note here that an expression may be a
statement/ but a statement may not appear in an expression.

In every case where a statement is permitted/ it may be
replaced by a CfifflUfiUDd StalfifflfiOl' consisting of one or more
statements enclosed in curly braces, as in

s t a t erne n 11
statement?

The compiler does not permit a null compound statement like

All statements/ except compound statements/ must end with a
semicolon.

In the formal definitions which follow/ reserved words
are underlined and parentheses/ where shown/ are required,
Also/ "statement" implies either a statement ended by a
semicolon or else a compound statement surrounded by braces.

J.l. hi.w£JL

The null statement does absolutely nothing. It is typically
used to supply a null body to a WHILE statement/ as in

while! putchar! getcharl))),*

or to provide a convenient place on which to hang a label.

3.2. EifiCfiSSiQQ 21£t£W£0t.

express ion;

Any valid B expression followed by a semicolon is acceptable
as a statement. To be meaningful/ the expression will
usually involve an assignment operation or function call/ as
i n

x = min(a/b) + x;
open! "/myfile"/ "r");
+ + 1 t

Waterloo 1 4 September 1978

but the compiler will happily
absolutely nothing/ such as

a < b;
open;
i ;

accept statements which do

Remember that/
expression/ not

in B/ assignment is an operator in an
a statement.

Harare
Before discussing the statements pertaining to storage

declaration or reference, we will briefly look at how
storage is allocated in a B program.

External storage consists of the global pool of
externals declared in the manner described previously. For a
function to use one of these externals, the name must be
referenced in an EXTRN statement.

Automatic storage consists of local variables which are
created anew on the runtime stack each time the function is
called and which disappear when the function returns.
Automatic storage is unique to each invocation of a
funct i on.

Internal (local static) storage is allocated within a
function body and is common to all invocations of a
function. The label, which is never explicitly declared, is
the only permitted instance of internal storage.

Constants used inside functions are allocated as
internal storage, but the compiler will not accept
constructs that would result in directly changing a
constant’s value.

Finally, there is a pool of free storage which can be
dynamically allocated by the library function GETVEC and
dynamically released by the library function RLSEVEC. This
free area is automatically grown as reauired up to the
limits imposed by the operating system.

Any identifier used in a function body must be a formal
argument, a label, or previously referenced in an EXTRN or
AUTO statement. The only exception is a function name used
in a function call, since the compiler automatically types
as external any name immediately followed by a left
parenthesis ’(*.

AUTO and EXTRN statements may appear anywhere in a
function body, but you should group them at the beginning of
the function.

September 1978 1 5 Waterloo

3 * 3 • 2* £xtrn,

£11£Q naineb name?/

This statement allows the function to begin using the names
previously defined as externals (see chapter 2). Although
an identifier may be externally declared as a vector/ you
should not indicate this in the EXTRN statement/ since B
lets you use any cell in a subscripting operation.

3*3*3* •

nameb name2Ccon st-exprJ/ ... /

The AUTO statement
is uni que to each

is used to declare local
invoc at i on of the function.

st or age/ which
For example/

auto x;
auto i/ j/ x C10];

A vector declaration is legal in an AUTO statement/ but the
size of the vector must be a constant expression# since it
is established at compile time.

£2OSt*£2<C£ is any legal combination of numeric or
character constants/ unary operators/ binary operators and
parentheses. Make sure what you use is sensible/ because
the compiler accepts constructs like ’’auto x£-1]” which lead
to undefined results. Normally/ one would expect a constant
expression which is not a simple numeric constant to involve
a manifest constant/ as in

m a x = 1 o;

auto x[MAX*2]/ yCMAX + 7];

If you need dynamic vector allocation/ you must use the
library function GETVEC to obtain it from the free storage
area.

An AUTO statement which declares a vector is executable
in the sense that/ when it is encountered/ it initializes
the pointer to "n + 1" words. The initial contents of an AUTO
vector or other AUTO variables are always undefined.

Because AUTO variables are allocated on the stack/ and
because there is no check for stack violation/ you should be
cautious about declaring large vectors as auto variables.
Although the compiler command will let you change the
default stack size of 500 words/ it may be preferable to
either use an external/ or else allocate it from free
st orage.

Waterloo 16 September 1978

a

x

A statement many labels as appear

a colon and preceding
example:

may be preceded by as
as in

3-4- Labels.
Any unique identifier followed by

statement is defined as a label* For

lab2: lab3: printf(”hi there”);

3-4. Ixaojifix of xnDixQl.
The GOTO statement does the

statement is used to exit from a
BREAK statements greatly simplify

3.4.1. fiQlQ.

SfitQ label;

obvious thing,
function. The
loop control.

The RETURN
NEXT and

will cause a function to transfer control to the statement
which has the label ’’label". The compiler actually accepts
"goto expression".

If "label" has not already appeared/ it is defined as
one. It is a fatal error if it is not used as a label in the
function body.

It is legal to transfer to any location inside a
function body, including into or out of a compound
statement. It is almost never a good idea to transfer into
a compound statement/ because the action is difficult to
follow and because it can lead to unpleasant surprises.

Because B is a typeless language/ the compiler has no
way of knowing whether the label or expression you supply in
a GOTO statement really turns out to be a valid label at
runtime/ so it is perfectly legal, but probably erroneous/
to say

e x t r n

Never try to pass a label as an argument to a function
and use it to transfer to another function. The program
will end up in one function, but with a different function’s
stack pointer, resulting in immediate or eventual disaster,
unless you know exactly what you are doing.

Sept embe r 1978 1 7 Waterloo

3.4•i • &£XU£D*

xsXuxd ;
££XU£Q < expression) J

The RETURN statement ends the execution of a function and
results in return to the caller. Upon return# all temporary
storage in use by the particular invocation of the function
di sappears.

The first form of the RETURN statement merely returns
control. The second form causes a one word value to be
returned also.

Note that the construct

return () i

is not permitted by the compiler (it gives a syntax error).
A simple RETURN statement is supplied implicitly at the

end of a B function body.
The library function EXIT is also available# should

your program wish to terminate execution at a point other
than after the last statement of MAIN.

3-4.3. Slfak.

b£££i '

The effect of BREAK is to drop out of the most recent
innermost enclosing WHILE# FOR# SWITCH# REPEAT# or DO-WHILE
statement. The compiler generates a fatal error if a BREAK
statement is not inside one of these.

3-4.4. N£ii.

D£*X '

NEXT is a directive to skip all further statements in the
most recent enclosing WHILE# FOR# REPEAT# or DO-WHILE loop#
and transfer to the test which determines whether looping
should continue.

3-5. iiaisasDl-

3.5.1. n

il (expression) statement

If the result of the expression is non-zero# then the
statement is executed. The parentheses around the
expression are mandatory.

jf (expression) statement! £15£ statement!

Water loo 1 8 September 1978

If the result of the expression is non-zero# the first
statement executes# otherwise the second statement executes.

In the case of nested IF statements where there are
fewer ELSEs than IFs# the compiler associates the ELSE with
the closest IF at the same level of nesting.

if (...) if (...) s1 else s2

resolves to

i f (. . .) i f“St atement

Think of IFs and ELSEs being placed on a pushdown stack as
they appear. An ELSE which you pull off the stack always
goes with the next IF pulled off.

Here are some examples of IF statements:

if(a) y*x/

if(a < 2) y = a/ else y = 0;

i f(a != b) 2 = g(y)7
else

a += x J
b -= yJ

}

5.6. Il££ali^£ siaiemsDis.
A REPEAT iterates a statement until a BREAK statement

is encountered or a GOTO causes control to pass outside the
loop. WHILE iterates a statement as long as an expression
is non-zero* testing at the top of the loop. DO-WHILE
iterates a statement until an expression is non-zero*
testing at the bottom of the loop. A FOR uses three
expressions to initialize* test and modify in controlling a
loop.

3.6.I. Bspsai..

££Q££i statement

The REPEAT merely executes the statement forever. The
statement is almost invariably compound. NEXT and BREAK
statements are legal inside a REPEAT.

September 1978 19 Waterloo

3.6.2. whil£

wblls < expression) statement

If the result of the evaluation of the expression is non
zero# the statement associated with the WHILE is executed.
After execution of the statement/ the expression is re
evaluated again and# if the result is again non-zero# the
statement is executed again. In other words# while the
result of the expression is non-zero# the statement is
executed. When the result of the expression is zero#
control passes to the next statement following the WHILE
statement.

BREAK and NEXT statements are legal in a WHILE
s t a t e ment.

2.6.5. £Q-wbil£.

bfi statement abile (expression);

The DO-WHILE provides a loop with a test at the bottom of
the loop. It is equivalent to:

BREAK and
statement.

repeat
<

statement
i f (iexpression break;

NEXT statements are legal in a DO-WHILE

Xqx (exprl; expr2; expr3) statement

The FOR statement may be used to set/ test and increment a
variable in order to control a loop. The FOR statement is
equivalent to

exprl;
while (e x p r 2)

s t a tement
exp r3;

The first expression/ which might initialize a controlling
variable# is evaluated. Then# if and while the result of
second expression (usually a test) is non-zero# the
statement is executed. Before returning to re-evaluate the
second expression# the third expression# which might
increment a controlling variable# is evaluated.

Both BREAK and NEXT are legal in a FOR statement. The

Water loo 20 September 1978

effect of NEXT is to pass control to the evaluation of the
third expression.

Any or all of the expressions may be null/ and they
need not necessarily involve the same controlling variable/
if any. Note that the second expression is always treated
as a logical expression. Some examples:

for(i = 0; i < 10; + + i) x C i J = j C i];

for(i = 10; i <= x; i += 2)
for< j = 1; j < y ; + + j)

qCilCjO = f(i + j);

fori ; i < n; ++i) yCi] = zCn - iJ;

NULL = o;
NEXT = 1 ;
DATA = 0;
• •
fori p = startlist; p ’ = NULL; p = pCNEXTj;)

iff plDATAD >= x) break;

3-Z- Switch ctateiESQt.
The SWITCH provides a conditional branch depending on

the one word result of an expression. The SWITCH has the
following formal syntax:

Switch < expression) statement

The statement is always compound and special labels are
allowed inside the statement to point to where to start
processing for a given case/ as in

twitch < expression)

CSS£ const-expr; statement
CSSS const-expr :; const-expr: statement

break i
case <rel op> const-expr: statement

/* re I op. is one of </ <=z > = / > */
dclault J statement

The SWITCH evaluates the expression and compares the result
with the constant or constant bounds in each CASE label. It
selects a case/ if there is one/ and begins executing the
compound statement at the statement immediately following
the appropriate CASE label. If the expression result fits no
case/ execution continues at the label DEFAULT (if supplied)
or at the next statement following the SWITCH/ if DEFAULT is
not Supplied.

Once a case is selected/ execution always falls through
into the next case/ unless a statement which alters the
control flow is encountered.

September 1978 21 Waterloo

Usually, a BREAK is used. It causes control to go to
the statement following the SWITCH.

A statement may have more than one label or CASE label,
just as a label or CASE label may be followed by more than
one s t a t ement.

As shown above, a CASE may be satisfied by 1) a single
value, 2) a range of values which include the endpoints, or
3) an upper or lower bound. Overlapping bounds draw a fatal
diagnostic from the compiler.

By we mean as usual any legal combination of
numeric or character constants, unary operators, binary
operators and parentheses which can be evaluated at compile
time as some constant value. String constants are not
permitted in this context.

Any attempt to SWITCH on floating-point values will not
work, since the generated code performs integer comparisons.

The compiler will construct a jump table for the SWITCH
statement if the ratio of 1) the maximum case value minus
the minimum to 2) the number of case labels is between one
and two.

As an example, here is a function which uses a SWITCH
to determine if a character is legal for a B identifier.

a Iphnum(c)
s w i t c h (c)

<
case ’ A’ :: • Z ’ :

/ * converts upper case to lower * /
/* and falls through to return */
r I = • • ’€ I — ,

case ’a’ :: ’z' :
case *0' :: ’9’:
case ’.’:
case :

return(c) »
/* would use break if return not used */

default:
return (0) •

/* end of alphnum */

Water loo 22 September 1978

4. jEiDieSlifiDS.

Expressions in 8 are constructed according to rules
which govern combinations of operators# identifiers# square
brackets and parentheses. B has a large set of operators#
which are described in this section.

Because 8 is typeless# the compiler always assumes a
given operation on a word is appropriate. Although this
tends to force you to do more checking yourself# it also
gives you the scope to do almost anything you want. This
typeless characteristic often causes trouble for beginning
users of B# because the compiler happily accepts possibly
erroneous operations# such as adding one to a function name#
or using a pointer as a function call. Such is the price of
freedom.

The compiler takes no responsibility for the validity
of expressions. There is no runtime monitoring of possible
arithmetic overflows or faults. Overflow faults are masked
out# but a divide error (like dividing by zero) will result
in an immediate abort.

Expressions are evaluated according to an 2£^££ Qi
binding which includes both the hierarchy of evaluation#
which determines the order of evaluating different types of
operators# and q r q yp ing # which determines the order in which
operators of the same type are evaluated. We will discuss
the hierarchy from highest (evaluated first) to lowest and
mention the grouping rule for each type. The results are
summarized in Appendix A and the explain file "explain b
binding".

4*1. E£i3d£)t! £ XD££5S1QDS.
The primary expression is the basic building block used

to construct expressions. It is defined recursively as
follows:

name
A legal identifier is a primary expression,

constant
Any legal constant constitutes a primary expression.

primaryC expr]
A subscripting operation# which is a primary
expression followed by an expression in square
brackets# is a primary expression.

p r i m a r y(arglist)
A function call operation# which consists of a
primary expression followed by an open parenthesis#
is a primary expression. The open parenthesis must
be followed by a possibly empty set of arguments#
consisting of comma-separated expressions# followed
by a close parenthesis.

September 1978 23 - Waterloo

(e x p r)
Any expression enclosed by parentheses which is not a
function argument list is a primary expression. This
lets you use parentheses to alter the order of
binding.

Here are some examples of simple primary expressions:

x getcharO (a + b) 6 x[i] 6Cx]

In cases where a primary expression is
another primary expression/ grouping
right. For example/ look at

composed itself o f
occurs from left to

x C i t j x[i]()

In the first case/ "x" is treated as a pointer to a vector
of vectors. In the second case* ”x” is treated as a pointer
to a vector of functions/ one of which is to be called. In
both cases/ "xCiJ” is evaluated first/ placed in a
temporary/ call it " y " / and then the remainder of the
expression is evaluated as "yCjJ" or ”y()"/ respectively.

£-1.1. iubsccicxinfl.
Subscripting is not restricted to use with variables

originally declared as vectors. It is a completely general
operation which may be applied using any two arbitrary
expressions .

To help you understand how subscripting works in 8/
take a look at the primary expression

a[i J

One of the variables is supposed to be a pointer/ while the
other is supposed to be an offset/ but it does not matter
which! The reason for this is that B gets a pointer to the
cell "a£iJ" simply by adding "a" and "i" together. If the
value of the cell is required/ the compiler gets it by using
the pointer. Therefore it is perfectly legal to
alternatively say:

i Call

anywhere you could have said "a£ij".

£•1.2. luorlifii) rails.
As you can see above/ the general

call is:
for of a function

primaryl e x p r 1 / exp r2f » . » exprn)

Most commonly/ "primary"
call/ but the generality
you construct and use
functions to be called.

is just the name of the function to
of expression is there to permit
vectors or lists which contain

A function call primary may always be assumed to return

Waterloo September 1978

a value. It is up to the programmer to make sure that a
value is returned when one is wanted or that a value is only
wanted when one is returned.

It is also up to the programmer to make sure that a
function is called with as many arguments as it needs. It
is safe to call a function with more or fewer arguments than
are defined for it# assuming the called function is prepared
for such contingencies.

Note that it is the parentheses surrounding the
argument list which tell the compiler the operation is a
function call# so they must always be present. For
instance/ say you have a function called PROC which requires
no arguments. To call it# you say

But if you say only

proc

no function call will take place# because none is implied.

£•2* Evaluss and lvalues-
When we come to the assignment statement/ or to

operators which perform implicit assignment/ it becomes
necessary to distinguish between the address of a thing and
its contents.

An XValdfi is the contents of a word. Any expression in
B may be evaluated for an rvalue. For example/ the rvalue
of a subscripting operation is the word addressed by the sum
of pointer and offset.

Everywhere in this manual where we say "expression"/ we
mean an expression whose result is some rvalue.

An lvalue is the address of a word. Only a name/ a
subscripting operation/ or a primary expression prefixed by
the unary indirection operator •*' may be evaluated for an
lvalue. The lvalue of a subscripting operation is the
address formed by the adding pointer and offset.

It is convenient to think of an lvalue as an expression
which is legal to the left of an assignment operator and of
an rvalue as an expression which is legal to the right/ as
long as you remember that both may also appear in other
circumstances.

Context determines whether an
for its rvalue or its lvalue,
assignment

expression is evaluated
For example/ look at the

aC3] = 2 + x

The expression on the right yields
sum of the contents of ”x" and

an rvalue which
the constant "2".

September 1978 25 Waterloo

must be able toz and does/ yield an lvalue which is the
address of the place to put the sum.

Conversely/ it is illegal to say either of

6 = x
(a + b) = x

because the expressions which are on the left of the
assignment operator are not permitted to have an lvalue. If
they could have an lvalue/ you could then in the first case
change the value of the constant/ or in the second case make
a meaningless assignment.

A unary operator acts upon a unary expression to
transform it in some manner. A ’’unary expression’’ is either
a primary expression or a primary expression already
modified by one or more unary operators. In the definitions
below/ ’’rvalue” or ’’lvalue” must be a unary expression.
Unary operators are applied from left to right. Except for
the unary indirection operator# the result of applying a
unary operator is always an rvalue.

The following unary operators are defined:

//rvalue
Assumes the value of the expression to be integer and
converts it to single precision floating point.

Orvalue
Converts single precision floating point to integer,

“rvalue
One’s complement. Converts all zero bits of its
operand to ones and all one bits to zeros,

•rvalue
Results in the arithmetic negation (two’s complement)
of the operand.

#*rva lue
Results in the floating point negation of the operand
word.

!rvalue
Logical not. The result is zero if the operand is
non-zero/’ otherwise# the result is one.

* r vaIue
The indirection operator. Takes the rvalue but uses
it as an lvalue. This is the only case in which a
unary operation returns an lvalue. Thus any primary
expression prefixed by a may appear on the left
hand side of an assignment. ”*6 » x” stores the
contents of x in location six. ”y = *x” stores the
contents of the word pointed at by x into y.

& I v a I u e
The address operator. Forces the program to generate
the lvalue of the expression# then use it as an
rvalue. For instance# ”&x” is an rvalue which
contains the address of x in the lower 18 bits# while
”&6” is illegal# because ”6” may not have an lvalue.

Waterloo 26 September 1978

++IvaIue
Adds one to the rvalue/ before using it. Each of the
auto increment/decrement operators require an lvalue
as its operand. An lvalue is required/ because of
the implicit action of assignment/ but the result is
always an rvalue.

Ivalue + +
Adds one to the rvalue/ after using it.

--lvalue
Subtracts one from the rvalue/ then uses it.

Ivalue--
Subtracts one from the rvalue/ after using it.

Sprimary
The at-sign operator is used to force the use of
Honeywell hardware indirection. Its effect is to OR
the indirect bit into the last generated instruction
for an expression (rvalue or lvalue). The
instruction affected is usually a load or store. It
was most commonly used to access characters using
tallies* by indirecting to a word with tally
modification and the address of a tally word.
Normally* you should not use it.

There is a fundamental
operator and subscripting which
how addressing works in B.
equivalent everywhere:

relationship between the ’’* "
should help you understand
The following are exactly

a C b J *(a + b) b£a J

To be able to write or understand B programs* it is vital
that you understand the validity of this relationship.

Here are some examples involving unary expressions:

+ +1
Adds one to the value of "i”. Frequently used
shorthand for ’’i = i + 1".

a£bJCcJ++
Forms an address by adding together "a" and "b”*
picking up the word pointed at and then adding ”c" to
the contents. It is equivalent to ”*(*(a + b) + c)”.
If this were part of a larger expression* the word
pointed at would be loaded into a temporary. Then the
contents of the addressed matrix element is
incremented by one.

&a C i]
Forms the address of the cell ”a£i]” by adding the
values of ** a ’* and ” i ”. That is* it is evaluated as
fl _ x 4 ” a + i •

y = * (& x)
The verbose way of saying ”y = x”.

Septembe r 1978 27 Wat er too

The word which word pointer "p" points at is copied
into "x"# then "p" is incremented by one to point at
the next word. That is# "p" is used# then
incremented.

x = ++*p;
The word pointed at by ”p” is incremented by one and
then copied into ”x”.

* + + p = x
The contents of ”x” are copied into the word pointed
at by ’’p”# but only after "p" has been incremented by
one to point to the next word. That is# *'p” is first
incremented/ then used.

*6 = 2
Places the value two in location six. "*6" is the
same as '’0C6]’’ or "6£01". This kind of construct is
used to access locations in the slave program prefix.

x£a£bJ + 1]
Gets the contents of "a£bJ" into a temporary and adds
one to the temporary to get the subscript. The
contents of "x" and the subscript are added together#
yielding the address of the element of ”x” to be
used.

61D££^ 20£££l££S-
All other operators are biosix operators/ which means

they require both a left and a right operand. Each operand
must be an rvalued expression.

With one exception# the order in which the two operands
are evaluated is undefined# so don’t have the evaluation of
one side depend on a side effect generated by the other side
(in a function call# for instance). Logical operators are
the only exception. Their operands are always taken strictly
from left to right.

The code generated for floating point operations is
correct# but not blindingly efficient# since the compiler
generates a separate load and store for each use of a
floating-point operand. However# it is there if you need
it. For non-casual use of these operators# it is probably
better idea to either call a FORTRAN routine to do the job#
or else program in some other language.

ShjjX 2Q£££t2£S.

expr << expr
The left operand is taken as the one word bit pattern
to be logically left shifted. The right operand
supplies the number of bits to shift. If negative#
or greater than 127# the result is undefined.

Waterloo 28 September 1978

expr >> expr
Logical right shift according to the same
arithmetic right shift is defined in the
but you may use the library function ARS.

rules. No
I a ng uage/

Shift operators group from left t o

expr S expr
The operator takes the bitwise "and” of its two
36 bit operands. If bit i of both operands is one/
then bit i of the result is one. Otherwise bit i of
the result is zero.

£.?• Silaise 2£.

expr * expr
Takes the bitwise "exclusive or" of its two 36 bit
operands. If bit i is on in one/ but not in the
other/ then bit i of the result is on.

4.2. Sixwise sr.

expr I expr
This take the bitwise "or" of its two operands/ such
that if bit i is on in either of the two operands or
both# bit i in the result is on also.

The following is
bitwise operations,
operation on one bit.

ope r a nds
a b
0 0
0 1
1 0
1 1

a summary chart of the results of
The table shows the effect of each

results
and o r e xor

0 0 0
0 1 1
0 1 1
1 1 0

i.2. asalixfi QPfi£alQ£S.

expr / expr
Integer division of the first integer operand by the
second. Will result in a divide check abort if the
right operand is zero. The result is zero if the
left operand is less than the right. The result is
truncated towards zero if the right operand does not
divide evenly into the left. The result is positive
if the operands are both positive or both negative;
otherwise/ it is negative.

Sept ember 1978 29 Waterloo

expr % expr
Results in the integer remainder of the integer
division of the first operand by the second. If the
remainder is non-zero/ it has the same sign as the
left operand.

expr * expr
Integer multiplication.

expr # / expr
Single precision floating point divide,

expr # * expr
Single precision floating point multiply. All
floating point operators assume floating-point
operands.

Multiplicative operat ors group from left to right.

£•10. 2fi££at2£s.
These provide integer or floating point addition and

subtraction.

expr + expr
Integer add.

expr - expr
Integersubtract.

expr + expr
Single precision floating point add.

expr expr
Single precision floating point subtract.

Additive operators group left to right.

4-11. RfilaiiCDal -22£££12£S.

expr = = expr (equal)
expr != expr (not equal)
expr < expr (less than)
expr <= expr (less than or equal)
expr > expr (greater than)
expr >= expr (greater than or equal)

The result is one if the given relation between two
integer operands is true/ and zero otherwise.

The following operators perform the same function for
floating point operands:

= = #! = #< #< = #> «>=

Waterloo 30 September 1978

A.12. Laaisal and.

expr & & expr
The result is an integer one if the result of both
expressions is non-zeroz and zero otherwise.

The left-hand expression is always evaluated first. If its
result is zero/ the result of the expression is zero and the
right-hand expression is not evaluated.

4.13- LQgi&jl

expr II expr
The result
expression

i s
or

an integer one if the result of either
both is non-zeroz and zero otherwise.

The left-hand expression is always evaluated
result is non-zeroz then the result of the
non-zero and the right-hand expression is not

the
i s

4.14. "gufiry" £P££J12r.

exprl ? expr? : expr3
The first expression is evaluated. If the result is
non-zeroz the second expression is evaluated and
returnedz while the third expression is ignored. If
the result of the first expression is zero/ the third
is evaluated and returnedz while the second is
ignored.

This is analagous to "if(exprl) expr?; else expr3”z
but has the advantage that it may be used in an expression.
For examplez a function to calculate the maximum of two
numbers might be coded as:

m a x(az b) return(a > b ? a : b) ;

Grouping is left to rightz so that

a ? b : c ? d : e

i s eoui valent to

a ? b : (c?d:e)

September 1 978 31 Waterloo

4-15. Ass1SDfflgQi QC££alQ£S.

lvalue = expr
Takes the one word result of the evaluation of ’’expr”
and stores it in the word addressed by the lvalue.

lvalue <op>= expr
Is equivalent to the assignment

lvalue = rvalue <op> (expr)
where <op> can be any one of

/% + -<<>>&!
Note that neither floating point nor relational
operators are included.

example/

x *= a + b;

is the same as

x = x * (a + b) /

In all cases/ the expression is evaluated first/ even though
the operator in the assignment may have higher binding
strength than an operator in the expression.

Assignments group right to left:

x = y = 0;

is taken as

x = (y = 0)#

Remember that assignment is an operation/ not a
statement/ and so is legal almost anywhere/ including
conditional expressions/ such as

i f((x = y£ i + ♦J) « z)

Note that parentheses are used in this case to alter the
order of precedence. These are required in this case
because the assignment operators have the lowest precedence/
which means that they are evaluated last.

Waterloo 32 September 1978

101QlO£nX2XiQn*££2£nden£ in format i 20-

The information in this chapter is subject to change.

^•1. Linkage ggny^niign^.
The 0 compiler’s mechanism of performing a function

call is rather different from the standard Honeywell calling
sequence. In this chapter/ we will describe the calling
conventions in detail/ so you can attempt to write or
understand functions written in GMAP for the B environment.

£•1*1. JFynStiQQ £311.
The standard B function call looks like

zero
sub/ *
S/n

where ”s" is amount by which the stack pointer should be
bumped and "n" is the number of arguments supplied. The
compiler generates these numbers for B functions.

When a B function is running/ its stack pointer points
to a word of return information. Above that point are a
fixed area for arguments and a fixed area for auto
variables/ all addressed relative to the stack pointer.
Stack space above the auto variables is used to hold
temporaries created during expression evaluation. There is
no check for stack violation. When one function calls
another/ the stack pointer must be moved so the callee does
not affect the state of the caller.

Before executing the TSX1 instruction to transfer
indirect to the function/ the caller must first set up the
argument values. The first and second arguments are loaded
into the A and Q registers/ respectively. Other arguments/
if present/ must be placed in the stack in such a way that
they are available to the caller once the stack gets bumped.
This is shown in the next section.

The general
like this:

convent i on for a subroutine entry look s

symdef sub
symre f .1 0001

sub tra indirect pointer to function body
zero end/debug end of function or debug table
xed .10001 (adx7 0/1 • advance sp by ”s”)
rem (stx1 0/7 * store return address)
staq 1/7 first two args passed in the AQ

The ZERO word is used by the debugger/ PMD/ and by the
profiler/ .PROFILE. It contains either a pointer to the
last word used in the function in the upper half or a
pointer to the debug symbol table in the lower half/ but not
both. If you are writing your own function/ it is quite
safe for both of these to be zero.

Sept ember 1978 33 Waterloo

Index register seven is reserved for the stack pointer.
Index register six is reserved for the coroutine package.
Address registers four and five are reserved for use by the
input/output package. B functions assume a called function
may have used any other registers.

The GMAP routines in the runtime package follow the
added convention that index registers five through seven may
not be used and that index registers three and four must be
restored if necessary upon exit.

By convention/ the first two arguments are passed in
the A and Q register, It is the responsibility of the called
function to store them if necessary.

The hardware will only allow a *’STAQ” instruction to
work correctly if the address of the store is at an even
word boundary. To enforce this# the stack pointer is always
initially set to an odd address# and must always be
incremented by an even amount,

Once the ”STAQ” is done# the stack is organized as
follows:

0#7
1 #7
2#7
n#7
n +1 # 7

ret urn address
first argument (initially in A register)
second argument (initially in Q register)
nth argument (placed in stack by caller)
start of auto variables and temporaries

5 • 1 • 3 • £ JL X •
When a 8 function

the sequence:

symre f , 1 0000
tsxO .10000
rem
rem
rem

ha s done its job# i t r et urns using

(ldx1 0 #7 - restore return address)
(sbx7 0#1 - restore stack pointer)
(qls 0 - set indicators for caller)
(tra 1 # 1 * return)

Prior
the Q
call,

to this# the
register# which

The calling

function
becomes

function

may load a one word value into
the value of the function

assumes the indicators are set
upon return.

A TSXO instruction is used so that the interactive
debugger# if in use# can determine the address at which the
function returned# in order to find out the name of the
function returning.

Waterloo 34 Sept ember 1978

5-2. Internal. ££E£.£.££.Qtati2Q gf abletiS.
The material in this section is intended to help you

understand how the code generated by B works internally.
The value of a function name is an external word containing
a transfer instruction with the address of the first word of
the function body in the upper 18 bits. Transfer of control
to a function body always occurs indirectly through a word#
whose top 18 bits contain the address and whose tag field is
expected to be zero.

The value of a label is a word containing# in the upper
18 bits# the address of the place to go to in the function
body and zeros in the lower 18 bits. The transfer involved
in a GOTO occurs indirectly through the label word.

The value of a pointer or address is a word# whose
bottom 18 bits are taken as an address.

The value of string constant is a pointer to the text
of the string.

6. Ihs S library.

One of the big advantages in using B is the
availability of a large library of useful functions which
simplify your programming problems and also supply a
reasonable interface to the GCOS/TSS environment.

Every B library function you could reasonably expect to
use has an explain file under "explain b lib”. There is also
an index of all documented routines.

Only the routines you need to get started using B will
be discussed here and even then not all options may be
treated.

Some functions may return a value,’ this is indicated in
this section by showing an assignment to indicate a value is
returned. Also# some functions are called with a variable
number of arguments. If you want to use an optional
argument# you must usually also specify any preceding
optional arguments also. Optional arguments are shown
enclosed in square brackets. For example# if a function is
shown as

return ar g1 # Car g2# a rg3]) ;

and you want to use "arg3”# then you must also use "arg2”.
Sometimes# as you will see# the first argument# usually a
"unit”# may be optional. In this case the called function
craftily examines the first argument to see if it is a
number valid for "unit”; if it is not# it adjusts its
argument references accordingly.

September 1978 35 Waterloo

6.1. .fiS£I - ££di£££iiQQ Ql i/Q.
Before your main program is entered# the run time

initialization routine calls a function named .BSET which
"predigests” the command line for the user program and also
sets up any "redirection of i/o" requested on the command
line.

In batch, .BSET looks for the command line on filecode
CZ. In your j clx you might have something like

data
command arg1 arg? .

•BSET breaks the command line up into "arguments”. An
argument is either a string of non-blank characters# a
quoted string# or a redirect request.

A redirect request has three forms:

< f i I ename
•BSET will open the file for reading on B unit 0.
Input for unit 0 will come from this file# rather
than the terminal.

> f iI ename
The filename is opened for writing. Output to B unit
1 will go to this file# rather than the terminal.

>>fi lename
Same as above# except that if the file already
exists# output is appended to the file.

A quoted string is delimited by either single or double
quotes. To get a quote inside a quoted string# either use
the quote which is not the delimiter or else put in two of
the delimiter characters.

•BSET collects the arguments which are not redirect
requests and builds a vector of pointers to those strings.
MAIN is later called by

main(argc# argv) J

where "argc” is the number of arguments collected and "argv”
is a pointer to the vector of strings. "argvEargcJ” always
contains the constant *1.

In addition# .BSET builds an external vector called
.ARGTYPE# each cell of which contains a character giving
some indication of the type of argument in the corresponding
ARGV string:

type
string
string in single quotes
string in double quotes
-opt i on
+ opt i on
possibly signed number
string with = in it

charac ter
• i

• * • •

9 99 9

•O’
t - I

example# look at the command line

Water loo 36 S ept embe r 19 78

go -r /myfile "a string" >b.out

MAIN will be called with ARGC set to four/ since ">b.out" is
not included. All writes on unit 1 will go to the file
b.out/ which is created if necessary. The ARGV and .ARGTYPE
vectors are set up as follows:

a rgvCO 1
argvtlJ
a r gv[2]
argvCS J
argv[4]

= "go"
- - r
= "/myfile"
= "a string"
= -1

.argtypCOJ = ‘ *

.argtypl1 J = ’

.argtypC2] = 1 '
,argtyp[33 =

and the contents of the remaining elements of the ARGV
vector are undefined.

If you do not want to have .BSET/ simply supply your
own function definition of ”.bset()/" which will replace the
library version.

Normally/ however/ you will want .BSET/ because it
greatly simplifies the task of handling command lines. In
fact/ there are even more powerful facilities built into
.BSET for scanning command lines with arguments of specified
types. As well/ you may call .BSET to scan an arbitrary
string. For full details/ see the explain file "explain b
lib .b s e t".

6.2. iDXxeduxxiQO Xq iDQuX/fluXQuX.
The largest class of functions in the B library are

those concerned with input and output. Sequential input
routines will read/ and convert to ASCII if necessary/ any
sequential file in standard system format/ including media
0/ 2 or 3 BCD/ media 5/ 6 or 7 ASCII and media 1 compressed
source decks (comdks). Output is ASCII (media 6) unless
special precautions are taken.

The i/o package will create output files if necessary
and "grow" them as required up to their maximum size or to
the limit of the file space quota for a userid.

6 . • 1 • UoiXs.
A B program may have several files open for reading or

writing at the same time. Each file is associated with a
number called a "unit"/ to which every i/o call implicitly
or explicitly refers.

There are five units whose function is predefined and
may not be altered by the user.

-5
This is an input unit whose origin is always the
terminal in TSS or file code I* in batch. It may be
used to force reading from the terminal or file code
I*/ even though the standard input may have been
redirected to come from a file.

September 1978 37 Waterloo

-4
This is an output unit whose destination is always
the terminal in TSS or file code P* in batch. It is
most often used to avoid possible redirection of i/o
by forcing error messages to appear on a hard copy
devi ce.

- 3
Used for console input in batch only.

~2
Used for console output in batch only.

-1
In TSS# all output directed at this unit behaves as
if it were typed at system level. In batch# output
to unit -1 goes to the execution report.

Unit zero is initialized as the standard jOQuX unit.
In TSS# this is the terminal but input may come from a file
if redirection of i/o is used. In batch# reads on unit zero
come from file code I*# if it is defined and if input was
not redirected. If I* is not present and there is no input
redirection# unit zero is placed in the end-of-file
condit ion.

Similarly# unit one is initialized as the SXSQditd
QUXQUX unit. In TSS# this is again the terminal and is
subject to redirection of i/o. In batch# output to unit one
goes to the printer# unless redirected.

Units two through 19 may be assigned by or to you#
using the file opening call# usually to permanent or
temporary disk files. It is permissible to open units zero
or one# but the usual practice is to leave them alone# so
they may be redirected.

6.2-2. Unix
Before

initialized
form:

eceojnd«
any i/o

by a call
may be performed on a unit# it must be
to OPEN# which is of the following

ret - opent Cun i t #] filename# action)

Normally# ’’unit" is not supplied# and OPEN finds a free
unit# which it returns. If you do specify a unit# and that
unit is already open# The state of the previous unit is
saved on a stack; when the current use of the unit is
closed# the previous state is restored and i/o may continue
on that unit as if there had been no interruption.

’’filename" is a pointer to a string containing the
usual catalog/file string (e.g. "fbaggins/s/test.b"). An
altname in quotes is used# if present. Permissions are
effectively ignored.

"action" is also a pointer to a string containing
characters which specify the access permissions required and
the type of i/o to be done on the unit.

’’ret" is the value returned by OPEN. If non-negat i ve#
the open succeeded and "ret" contains the number of the unit
just opened. "ret" is negative and no unit is opened if
there was a file access error or if there was an OPEN error.

Water loo 38 September 1978

Although not quite all of the various things accepted
by OPEN are dealt with in this chapter# they are treated
fully in the explain file for OPEN.

Mode actions: OPEN offers three ways to specify the
mode of the unit being opened. They are as follows:

I
This forces the requirement that the unit to be
opened be a linked (sequential) file.

b
The 'b‘# for binary# requires that the unit being
opened be a random access file.

s
This is used for so-called "string i/o". The
"filename" argument is taken as a pointer to the
start of a block or words in memory The stream i/o
functions will place characters into this block of
memory# rather then transmitting them to a file.

If none of these is supplied# "lb" is assumed# indicating
that a file is wanted and that it should be accessed
according to its mode. It is then up to the program to
determine# with the help of the function FILDES# whether the
file is random or sequential and then make whatever i/o
calls seem appropriate.

Error actions: Normally# OPEN never returns an error
status# since the default action is to abort the program
with a reasonably understandable error message.

The OPEN function lets you specify options which allow
you to handle either file opening errors or file i/o errors
or both. These options are in the form of characters which
may appear in the action string:

arranges things so that a negative status is returned
on an i/o error.

Sets things up so a negative status is returned on an
OPEN or file access error.

Normally# when an error status is returned# no error
message is printed. The inclusion of the ’m' option
in the action string will cause the appropriate
routine to display an error message before returning
bad status to the caller. It has no effect if neither
the ’ e ’ or ‘ f ‘ action is used.

i nstance# you said

open("/my file"# "rfm")J

and "/myfile" could not be opened with read permission# OPEN
would print an error message# then return bad status to the
caller.

In the case of OPEN errors# you will most likely get

September 1978 - 39 - Waterloo

back a number with is the negative of the file system error
status. For example/ OPEN would return -5 for "permissions
denied". In addition# OPEN itself is liable to return any
of the following special error statuses:

-64 —
— 65 —

too few
no free

arguments
unit

-66 - open append error

File acces sing in
subsystem. In batch# the
your program.

T S S is done
file accessing

by calling the
logic is bound

.GET
with

File access conventions: There are a number of file
access/create conventions for TSS which you should be aware
of:

1. Search rule: If you are opening a file and the
filename does not contain any slashes or dollar signs (e.g.
"b.out")# the file accessor first searches the AFT for a
file of that name. If not found# the file accessor searches
for a quick-access file of that name under the current
userid. If the filename does contain at least one slash or
dollar sign# it is assumed to be the name of a permanent
file. If the first character of the name is a slash or if
the name contains no slashes at all# the file is assumed to
be under the current userid; otherwise it is taken as a
complete name.

2. Create rule: If the search fails and the request is
to write or append# OPEN will attempt to create the file. If
the filename contained no slashes or dollar signs# OPEN will
try to create it as temporary; otherwise it tries to create
a permanent file.

3. AFT rule: If the file was already in the AFT when
accessed# it is left there when the unit is closed;
otherwise it is ruthlessly removed from the AFT. You may
override this by including in the action string either the
character 't* (for transient) to force deaccess# or the
character ’k* (for keep) to force the file to be kept in the
AFT.

6-2.1. UfllX tlQSlnj.
When you are through with a unit# you may want

it explicitly by calling CLOSE:
to close

cIose(unit);

For sequential stream output units# CLOSE flushes the output
buffer if necessary# with an end-of-file mark written if
appropriate. A unit associated with a disk file has the
file deaccessed# if required. CLOSE releases the i/o vector
after checking to see if there was a prior use of the unit
which had been interrupted and saved. If there was# it is
restored and i/o may then proceed on that unit as if there
had been no interruption; otherwise# the unit is free for
further allocation.

When your MAIN function terminates# or when you call

Waterloo 40 September 1978

EXIT directly, all open units are closed automatically.
Note that if you hit break, things are set up to call EXIT,
unless your program has established its own break handling
procedure.

Any attempt to read data from a unit which is not open
results in the library routine called returning a value
which indicates nothing happened. Similarly, output to a
unit which is not open tends to vanish.

6-2.4. Unjx sailShing.
Since some input/output calls may not specify a unit

directly, the i/o package maintains a default input unit and
a default output unit to which these calls implicitly refer.

Initially, the i/o package is set to read from the
standard input (unit zero) and write on the standard output
(unit one).

Any successful call to OPEN changes the default input
or output unit.

A library function which takes a unit as one of its
arguments will will change the reading/writing unit for the
duration of the call and restore the previous value before
returning to the caller.

User control over unit switching is supplied by

old.unit = .read([new.unit])J
If "new.unit" is given, it becomes the current read
unit. The number of the old read unit is returned.

old.unit = .write([new.unit]))
Works the same way as .read, except that it applies
to the default write unit.

6-3. Seaueolial sxrsdm i/p.

This section describes the body of routines oriented
towards handling input/output on terminals or standard
system format sequential files.

The i/o package reads almost any media and arranges
things so that the using program sees only a stream of ASCII
characters. For instance, BCD printer slews and strange
escapes in media 3 files are correctly detected and
converted on input, as are ASCII slews in media 7 print
image files. Compressed source decks are handled correctly,
but the way it handles object decks is probably not very
useful. Media 0 is always taken as variabIe-Iength BCD.

On output, the i/o package writes media 6 ASCII unless
special action is taken as described in the explain file for
OPEN. If writing to SYSOUT in batch, output is media three
(BCD printer format).

September 1978 4 1 Waterloo

You have the option of opening a unit to read, to write
or to append as follows:

unit = open(filename, " r I") ;
open a unit for reading, requesting read/concurrent
permission.

unit = open(filename, "wl");
will open a unit for writing, requesting
write/concurrent permission.

unit = openf filename, "al"),'
will open a unit for writing so that data written by
the program is appended to the end of the file. If
the file is null to start with, OPEN treats the
situation just like a regular open for writing.

£>.3.1. l££!I!iD51 Ml- Ills.
There are a few special features of and differences

between file and terminal i/o of which you should be aware.
A logical record consists of a string of characters

followed by a "record terminator", which is one of * *n‘,
**r’, **v', or **f. Of these, **n' is never present on an
input file/ but a ’*n' never is; instead, the ’*n* is
automatically supplied by the i/o package to indicate the
end of a record. On input from a terminal, you separate
logical records (lines) by using either the "return" or
"line-feed" key.

End of file on a file is signalled by the presence of a
special record at the end of the file. End of file on a
terminal is signalled by a line whose first (and usually
only) character is an ASCII file separator (FS - octal 034)
character, the same as is used by TSS GFRC. On most ASCII
terminals, including the Teleray and Vo Iker-Craig, a FS
character is transmitted by typing the ’cntl’ and
(backslash) keys simu ItaneusIy, followed by a carriage
return. On certain others, you get FS by typing ‘cntl* and
1. Alternatively, an EOT character, usually typed as
’cntl’-'d*, may be used instead. You can’t signal end of
file on a 2741.

Sequential file output is written in GFRC standard
system format with 320 word blocks. An end of line (**n‘)
character written to a sequential disk file signals the end
of a record but is not itself placed in the record; all
other record terminators do get written out. A new logical
record is start following the receipt of any record
terminator. If more than 1272 characters are written in a
logical record, the i/o package will generate partitioned
records to permit the logical record to span more than one
physical block. A 320 word buffer is written out only when
it is necessary to start a new buffer or when CLOSE is
called.

Terminal output occurs whenever a record terminator is
received, but is buffered by TSS. However, if your program
issues a read from a terminal, the i/o package arranges that
all output sent appears on the terminal before it is
"unlocked" for input.

Waterloo 42 September 1978

When writing to the batch console# a **v* is translated
to a ’*n*/ but does not cause the current line to be
flushed/ in order to let you either write a couple of lines
or else write a line and then read a line/ without having to
worry about some other process affecting the console between
writes or between read and write.

6.3.2. itjceam i/q lunetiaas.

char_got = getcharO
Returns the next character from the current read
unit. Returns the character '*0' if the current
reading unit is closed or at end~of-file. Most of
the input routines described here behave as if they
make repetitive calls to GETCHAR.

char = ungetcl char)J
Sends a character back to the current read unit/ so
that the next call to GETCHAR will return the last
character put back.

char = getc(unit);
Same as GETCHAR/ except the reading unit is switched
to "unit" for the duration of the call# then
restored.

char_put = putcharl char);
Sends the character supplied as its argument to the
current writing unit. PUTCHAR also returns its
argument word as its value. The argument word may
actually contain up to four non-zero characters.
PUTCHAR will output as many characters as there are
in the word.

char = putc(unit/ char);
Same as PUTCHAR/ except PUTC switches writing units
for the duration of the call.

string = getstringl Cunit/J string [/maxi]);
GETSTRING gets the next line of input/ or the
remainder of the current line of input if GETCHAR has
already been called. The newline at the end of the
line is not returned/’ instead it is replaced by a
’*0' to mark the end of the string. "string" is
taken as a pointer to a vector long enough to hold
the string. "unit" is used if supplied,; otherwise
the current read unit is used. If "maxi" is given/
only the first "maxi" characters are returned/ with a
'*0' tacked on to the end. If the unit is closed or
at end-of~file/ GETSTRING returns zero; otherwise it
returns "string". The string is the nullstring if a
line contains only a newline. If GETCHAR was not
called/ GETSTRING has the effect of returning the
next line of input from the terminal or the next
logical record from a file.

September 1978 4 3 Waterloo

string = getlinel [unit/] string [/ maxlen]);
Same as GETSTRING/ except the line terminating f*n*
is included in the string/ just before the string
ending ’* 0 1 .

PRINTF is the most frequently used means of doing
output in the B library. If ’’unit” is not supplied/
the default writing unit is used. If ’’unit” is
given/ PRINTF temporarily switches writing units/ but
restores the original state upon return. "format" is
a string describing how the arguments are to be
output. It may contain any combination of literal
characters and formats. A format is of the form
”%nnx”/ where ”nn” is an optional count/ and x is one
of the following characters:

b - The corresponding argument is taken as a
to a string of BCD characters/ which is

to be translated to ASCII and printed. Since
BCD strings do not have a string terminator/ a
count of six is assumed if not supplied.
Trailing blanks are stripped.

c * The corresponding argument is printed as an
ASCII character. The count option is not
applicable. The argument word may actually
contain up to four non-zero ASCII characters/
which will be printed.

d - The cor responding argument is taken as an
decimal integer which is converted to a string
and output.

f - The argument is taken as a floating-point
number to be converted and output. If you
program does not use at least one floating
point operator/ you must include an ”extrn
.float;” to force the loading of the floating
point output routine.

o - The contents of the argument word are output in

s - The corresponding argument is taken as a
pointer to an ASCII string/ which is transmitted
to the output unit stripped of its trailing
• *0’ .

z - Same as ’dS except that if a field width is
given and the converted number is too small for
the field/ it is padded on the left with zeros/
rather than blanks.

If a character in the format string is not part of a
format/ it is printed as it appears. If a format
does not have a corresponding argument/ it is printed
as a literal string. To print out *%*/ you must use

given here;• yyi fa fa . There is more to PRINTF than is
for full details* see the explain file "explain b lib

Waterloo 44 September 1978

string = putstringl string C,maxlJ)#
Works in much the same way as GETSTRING. The '*0*
which marks the end of the string is not output. If
you want to write out a logical record and the string
to be output does not end with a ’*n‘, you should
usually follow a call to PUTSTRING by a
"putchart ' *n'b"'.

number = getnumO;
GETNUM returns the next possibly signed integer
number from the input stream. It calls GETCHAR until
it has skipped over all blanks, tabs or newlines. If
the character is not a digit or a sign, zero is
returned, indicating no number was found. If a sign
was found, and the next character is not a digit,
zero is returned again. Otherwise it collects
numeric characters until a non-digit is found, then
converts the numeric string it has collected to
binary and returns that number as its value. The
external GETN.A has the value 1 if a valid number was
found. The external GETN.L contains the last
character read.

putnumt number);
PUTNUM converts the assumed binary integer which is
its argument to a character string and directs the
string to the current output unit.

re read ()>
Arranges things so that the next input starts at the
beginning of either the line currently being
processed or the line just read. When called
immediately upon entry, the next GETSTRING will
return the command line the program was invoked by,
if you do not want to use the services of .BSET.

status = eof(Cunit])J
Returns a non-zero value if "unit" is at end of file.
If "unit" is not given, the current reading unit is
used. Once a unit is open, end of file is set only
after an attempted read results in the detection of
that condition. If "unit" is given, and the unit is
an output disk file, a logical end of file is written
and a new block begun.

There are a few other routines which must be mentioned, but
which will not be described in detail here. READE does
formatted input, somewhat like PRINTF in reverse. It also
supplies the only convenient means of reading in a floating
point number. GETNUM and PUTOCT can read or write octal
numbers.

GETREC and PUTREC allow you to obtain/transmit a
logical record, including record control word, without any
intervening processing by the i/o package. You must
understand standard system format before you attempt to use
GETREC or PUTREC.

September 1978 4 5 Waterloo

6.4. fiaodcffi ills j/2-
When using random-access files/ your program is

responsible for all input or output done on the file. The
basic unit of i/o is the sector of 64 words. Any number of
sectors may be read or written at one time.

To open a random file for reading/ use the call

unit = open(filename/ "rb")/

The rules are the same as for the regular OPEN call/ except
that the character ’ b • in the action string indicates that
the file is to be accessed as random. The action *b* stands
for "binary" - we would have used ’r* for "random"/ but it
is already taken for "read".

To open a file for writing or reading and writing/ use

unit = open(filename/ "wb”)/

If you intend to both read and write the file in batch/ you
should use an action string of "rwb".

Reading is accomplished by

status - re ad (unit/ buffer/ sector/ nwds) /

"buffer" is a pointer to a vector into which the data will
be read/ "sector" indicates at what sector in the file the
read will start/ and "nwds" indicates how many words will be
transferred. The first sector number in the file is zero.
If the status returned is non-negative it is a count of the
number of words transmitted/ otherwise it is the negative
major (bad) status from the i/o.

Writing is accomplished by

status = write(unit/ buffer/ sector/ nwds)/

The arguments have the same meaning as those for READ. The
GCOS i/o system always writes a multiple of 64 words. If
the number of words you transmit is not a multiple of 64/
the unused fraction will be filled with zeros on writing.

6-5- Siring QQfirjtjgni.
The B compiler recognizes the existence of strings only

in that it handles string constants. All operations on
strings are handled by function calls. Recall that a string
is a sequence of characters packed four to a word in a
vector and terminated by the ASCII '*0*.

Functions are available to permit processing characters
in a string in a "random" manner or character by character.
We will also mention several useful string utilities.

Water loo 46 September 1978

6-^.1. "Bandao" iXciQfl acQxessiaa-

ch = chart string/ i)£
Returns the ith character in a string pointed to by
"string". The count always starts at zero.

ch = (chart string/ i/ char);
Replaces the ith character in the string pointed at
by "string" with the character "char" and returns as
its value the character supplied.

Where characters are in BCD format (6 characters per
word)/ you should use the function CHAR8 instead of CHAR and
LCHARB instead of LCHAR. The calling sequences are the same/
but remember that they take and return BCD characters/ not
ASCII.

£.5.2. SsQygQiial string a££fss.
By using one of the following calls/ it is possible to

"open" a string in such a manner that calls to regular
sequential i/o routines place characters in or return
characters from a string. This method is faster than using
CHAR/LCHAR/ because the implementation uses hardware
"tallies". The action 's' stands for "string".

unit = open(string/ "rs" C/pos])£
Opens a string so that calls to GETCHAR will return
characters in the string. A call to GETSTRING returns
all characters up to but not including the next ’*n'
or else up to the terminating ’*0*. When the string
is exhausted/ the unit is in EOF status. If you want
to start getting characters at some point other than
the first character position/ use the optional
starting character position "pos". Any library
function which obtains characters from an i/o unit
will also work even if the unit is a string.

unit = open(string/ "ws" C/posJ)J
Opens a string so that calls to PUTCHAR place
characters in the string. PRINTF/ PUTSTRING/ PUTNUM
and other functions will also send characters to the
string. The function of "pos" is the same as
described above.

unit = open(string/ "as")/
Locates the terminating ’*0* of "string" and sets
things up so you start writing into the string at
that point. It is up to you to make sure that the
vector pointed at by "string" is large enough to hold
whatever your program puts into it.

September 1978 4 7 Waterloo

print(string/ format/
Same as PRINTF/
st r i ng/ i nstead of

a r g 1 / a r g 2 / . * .) ;
except it directs its
an open output unit.

output to a

When you call CLOSE on a unit open for output to a string/ a
terminating ,*0* is placed in the string*

6-5.3. Slrins ytiLjii.es.

string = concatC string, sb s2z ...);
Concatenates the strings "si" through "sn" together
and places them in string "string". The output string
may be used as input/ providing it appears first in
the list of strings to be concatenated. When called
with only two arguments, CONCAT efficiently copies
one string into another. CONCAT returns its first
argument as its value.

vaI = nullstringC string);
Returns a non-zero value if the string contains only
the end-of-string character **0‘ and zero otherwise.

val = equalC stringl, string?);
Returns a non-zero value if the two strings supplied
are identical, and zero otherwise.

count = lengthC string);
Returns the number of characters
pointed at by "string", not including
’ *0’ .

in the string
the terminating

newpos = getargC arg, string, pos C,delim]);
Starting at position "pos" in "string", GETARG
obtains the next group of characters ending with a
blank and places it in the string pointed to by
"arg". It returns the position in the string where
the scan stopped, so that it can be called repeatedly
to obtain successive "arguments" from the string.
If "delim" is supplied, it is taken as a pointer to a
string containing the delimiters which will cause the
scan to stop; the string must include a blank if you
want the scan to stop on a blank. Leading blanks are
ignored. GETARG is useful for scanning a command
tine.

There are a number
string operations, including
given character is in a
determines if one string is
than, or equal to another;
instead of character strings;
input from a string; and
of these have explain files

of other functions which perform
ANY, which determines if a

given string; COMPARE, which
lexically greater than, less
NUMARG, which scans off numbers

READF, which can do formatted
which moves substrings. AllCOPY CH,

Water loo 48 September 1978

ytiLjii.es

Sl2£J9£ 2112£Jij2D.
Library functions are supplied which allow you to

dynamically obtain or release memory in the free storage
pool.

addr » getvec(n) ;
Obtains from free core a vector of length ”n” plus
one words and returns a pointer to the vector. Once
acquired in this manner# the block may referenced
using subscripting# as in

x - getvect 63) ;
x[1] = a£3j;

rIsevec(addr # n) ;
Undoes a GETVEC by releasing the "n" plus one words
pointed to by ’’addr” back to the free memory area.

All memory allocation is done by manipulating a free
list. The free list initially includes the so-called ’’core
hole”. You can return via RLSEVEC any space which is not on
the free list# as long as the address of the space is
greater than the load address of RLSEVEC. If you attempt to
release memory which is already on the free list# in whole
or in part# RLSEVEC will immediately abort.

GETVEC obtains more storage from the operating system
as required. In TSS# a subsystem is aborted with the
message ’’not enough core to run job” if a request for memory
cannot be satisfied. In batch# GETVEC aborts with a ”0K”
abort code if a request for memory is denied.

Finally# we will mention three useful routines# each
described fully by an explain file# which use these calls:
GETMATRIX will construct and return a pointer to a
mu 11idimensionaI matrix; ALLOCATE can be used to obtain a
dynamic array which will automatically disappear when a
function returns; and RELMEM will release any free memory
back to the operating system# in order to reduce program
size.

6.z. Media £2Qk££S12D.
Two functions are supplied to let you transliterate BCD

into ASCII and vice versa. A BCD string consists of a vector
of words containing the characters packed six to a word/
Ieft-adjusted and padded with blanks. There is no equivalent
to the '*0* in a BCD string.

ptr = ascbcdl output# count# input);
Takes "count” characters from the ASCII string
"input"# transliterates them to BCD and places them
in "output". If a ’*0' is encountered before "count"
is exhausted# blanks are supplied and also used to
pad the BCD string to a word boundary. "input" and
"output" must be pointers, "output" is returned.

September 1978 49 Waterloo

= bcdasc(output/ input/ count)#
Takes "count” BCD characters from "input"#
transliterates them to ASCII and places them in the
ASCII string "output". Any trailing blanks are
deleted and the end of string delimiter ’*0* is
placed at the end of the ASCII string. "input" and
"output" must be pointers, "output" is returned.

£.2. Sail isrir^n.
The function CALLF provides the ability to call FORTRAN

subroutines# or any routine which uses the GCOS CALL
conventions. However# routines so called must not be called
recursively and must not attempt to do input/output. The
FORTRAN i/o package# and File and Record Control (GFRC)#
which FORTRAN i/o calls# are completely incompatible with B
i/o.

intval = callf(&routine# &arg1# &arg2# ...)J
Converts its arguments to the form of a standard GCOS
CALL macro and calls the named "routine", "routine"
must be referenced in an EXTRN statement and must be
passed fcx 3d<2££SS# as shown. The arguments must be
passed by address also. That is# if an argument is
not a vector pointer# you must say "&arg". Constant
values must be assigned to a temporary before being
given to CALLF# since you can’t say something like
"&2". The value of a CALLF is the logical or integer
value returned# if the routine called is a function
subrout i ne.

floatval = cal Iff(^routine# &arg1# &arg2# ...
Works exactly the same way as CALLF# except that it
must be used for function subroutines which return a
floating point result.

As usual# you are responsible for ensuring the correct
number and type of arguments are passed.

6-2. and
There are two functions provided to let your 8 program

execute DRL or MME system calls in a reasonable manner;

dr I.drl(number C#a rg 1 # arg2# ...3)
Allows direct access to the DRL functions. "Number"
is the DRL number to be executed# and any following
arguments are the words to follow the DRL. The A and
Q registers are set to the values of the externals
DRL.A and DRL.Q respectively. After the DRL has been
executed# these externals are set to the contents of
the A and the Q. It is possible to use a DRL which
requires an error exit or a place to go to# since the
DRL is executed in the stack# using the stack pointer
of the caller. For example:

Waterloo 50 Sept ember 1978

%b/man i f/dr Is

o p t s C 2] = o p t s C 3 J = 1;
acc.fill "gcos3/gcos-hi-3ic"/ opts/ ret)/
but = ge tvec(600);
ascbcd(ret+2/6z".mbrt3") i
drI.dr I(res tor_z ret<<18 I 1/ buf<<18 I 1z

(t ra&077 7777000000)I(buf+ 512))J

printfC "%24b*n"z buf+4+status*4) ;
rIs eve c(but z600)i

This code sequence/ which obtains a batch error
message by locating it in the batch error message
module/ uses the value of a label to supply a return
address to DRL RESTOR.

mme.mmef number C/arglz arg2z ... J)»
Functions in exactly the same manner as DRL.DRL/
except that it uses externals called MME.A and MME.Q.

Z. UsIds 6.

7.J. £2lDDiling/ryjinjna/ijetjygsing.
The B command is the main tool for preparing B

programs. If given a source file/ it will call the compiler
to read the source and generate a set of object decks. It
may call the random library editor RANEDIT to place or
replace modules in a library. Unless there are fatal
compilation errors/ it always calls the TSS loader to
prepare a load module. Only the most common use of the B
command is discussed here. For full details/ see the TSS
explain file "explain B command".

To compile and load a source file/ just say

B s r c f i I e

where "srcfile" is the name of a sequential file containing
B source statements. If there were no fatal errors/ the load
module is left in a random file called ".h"z which is
created as temporary if necessary. If you have a quick
access permanent file called ".h"z it is used instead. This
file is "grown" automatically by the TSS loader as required.

You could have forced the B to initiate execution by
saying

B -go source-f ile

but/ if your program plans to interpret a command line/ it
is preferable to use the command "go"/ like

September 1978 51 Waterloo

go arg 1 arg?

which will run the load module in ”.h” with the given
command Iine.

Your program will probably not work correctly the first
time. Usually/ undebugged B programs are aborted by TSS for
some reason such as ’’memory fault”# ’’address out of range”/
etc. These errors automatically force a memory dump to be
written to a temporary file called ”abrt”.

Once you have the dump/ you can inspect it using the
post-mortem debugger PMD# which will allow you to see a
traceback of the calls in effect at the time of the fault#
as well as examine the state of local and external
variables.

It may be that your program does not
but does terminate normally. You can call

p e r f o r m
the B function

a b o r t () J

at strategic points to force a dump to be taken.
PMD by itself may not be sufficient to put the finger

on your program’s problems. It is always advisable to use
frequent calls to PRINTF or DUMPA to supply debugging
informat ion.

For full details on PMD, see the TSS explain file
’’explain pmd”.

There are a few other options in the B command which
you may find useful. If you find you are allocating too
many AUTO variables# so that your program violates the stack
limit and overwrites your own code# you can specify a larger
stack by using the ”Stack=nnn” option# as in

8 src.b st a c k = 7 00

Fully debugged production programs need not carry the debug
tables with them when running. Use the ’’-Nodebug” option to
turn off the loading of debug tables.

B -node bug src.b

You can also ask for a smaller stack# to save memory. The
default size is 500 words.

If you change one routine in a program# you usually
have to recompile the whole program. It is sometimes more
convenient to store routines in a random library. That way#
you need only recompile one routine or one group of routines
to make a change. The B command provides an interface with
the RANEDIT subroutine library editor. To start with# if
you say

B src.b raneIi bs/ I i b

the routine or routines in src.b will be edited into the
library ”lib”# which will be created if necessary according
to the usual B file accessing conventions and initialized
(cleared) by RANEDIT. To add new routines or replace old

Waterloo 52 S eptember 1978

ones, you simply say

B srcl.b ranelib=lib

Your program can load from a user
"Library=" option/ as in

library by spec i tying the

B src.b library=mylib

When the loader is called* the library specified by the "r = "
option is searched along with any other libraries given
using the "I=" option. Libraries are always searched in the
order given on the command line. To delete routines from a
library* it is necessary to use the TSS command RANEDIT (see
the TSS explain file).

The options to the B command are of the forms

keyword=string
-keyword

In both cases* the keyword may be abb££Viat2d using the
following rule: In the explain file* a keyword is shown
with upper and lower case letters. A valid abbreviation
must include those letters which are in upper case* along
with any other letters in the order in which they appear.
For example* valid abbreviations of the ”Ranelib=filename'’
option include

r ane= f i I ename
rlib = fi I ename
r=filename

Various
command line

options may* of course* be
and abbreviated* as in the

combined onto one
following example:

B cmdIib/s/roff h = cmd I ib/roff I = b / x lib s=250 -n

This command line uses the option "Hstar=fiIename”* which
allows you to designate the file into which the generated
load module will be placed.

7.2- iamfiilgr/iQa^r iQtgrX^gg.
When processing a source program* the compiler

generates not one but a set of object decks and places them
onto a temporary file called "b*" - the input file for the
loader. This file is also used as input to the random
library editor RANEDIT* if it is called.

The compiler always generates an object deck containing
the B stack area* which is either 500 words or the size
specified in the "Stack=nnn" option. This object deck also
contains the externals defined before the first function
definition* if any.

A separate object deck is generated for each function.
An object deck is also generated for each group of

externals between function bodies and one for the group of

September 1978 53 Waterloo

externals after the last function body/ if any

z.5. Using tat25 fgr b 1 i 1X1 •
When you type in a B program/ you will probably want to

leave indentations in order to make clear the order of
nesting of your source statements.

Spaces are the logical thing to use? but they are
tedious to type and it is difficult to be consistent. At
Waterloo* we usually suggest you use an ASCII tab character
as one unit of indentation. This has the advantage that*
when you use TLIST to get a listing of the source* the TLIST
command automatically expands tabs into the right number of
blanks* so your program comes out indented the way you want.
Also* you can use the " 0 T D " directive inside the QED text
editor so that it* too* expands tabs when displaying a line.

It is not possible to use a "tab character" which is
not an ASCII tab.

Z-4- Souse pitialls.
If you have a floating point value* it is not a good

idea to say

if(floatvaI) ...

because the code generated checks to see if the contents of
"floatval" is logically non-zero* rather than to see if the
contents are equal to a floating-point zero. Since a
floating point zero may not in fact be a word containing all
zero bits (since the exponent may be non-zero and is part of
the word) it is better to try

if(floatval #•= 0.0) ..

In general* floating point is tricky to use in B* since
there can be no type checking. You must constantly watch out
for erroneous constructs such as using "-3.0" instead of
"#-3.0".

Also* here
constants.

is a common
you say

pitfall in the use of string

auto x £ 203;
x = "a string";

The cell x is changed to point to the storage occupied by
the string and you lose the ability to address the 21 words
originally reserved for the vector. What you really want to
say is

auto x;
x = "a string";

Alternatively* if you had wanted to initialize the vector
with the string* you should have used the library function

Waterloo - 54 - September 1978

CONCAT to copy in the string:

auto xCZOJ;
concat(x , "a string”)J

or else you could have defined ”x" as an initialized
external.

Finally, something should be said about the size of a vector
and the length of a string.

When you declare a vector of size "n", you know that it
will actually occupy "n + 1” words, because the vector is
indexed starting at zero. Every library routine to which
you must pass the size of a vector observes exactly the same
convent ion.

In practice, if one needs a vector of size "n", then
one declares it to be of size "n", and then ignores the
zeroth or the nth word. Thus a FOR loop indexing through
the vector might run in either of two ways:

for(i = 0; i < n; ++i) ...

f o r(i = 1; i <= nJ + + i) ...

Strings also can be indexed into, using library
functions, using a zero origin, but at first it might appear
to you that a string with "n" characters in it has length
"n”, rather than "n + 1". For example, the string "abcdef"
has six characters and its length is six. But recall that,
by definition, a string is terminated by a '*0* character,
which you do not see. If you include the trailing ’*0* in
the count, then a string of length "n" actually contains "n
+ 1" characters.

All library functions which require the length of a
string need the number of characters, not including the
’*0’. The library function LENGTH returns just that number.

September 1978 55 W a t e rIoo

Appendix A

B - escape sequences.

There are two sets of escape sequences/ one for use inside
string or character constants/ and the other for use out
side.

1. Escape sequences are used in character constants and
strings to obtain characters which for one reason or another
are hard to represent directly. They consist of where
1- * is as below:

♦0 end of string (ASCII NUL « 000)
*e end of string (ASCII NUL = 000)
*(< - left curly brace
*) } - right curly brace
*< C - left square bracket
*> J - right square bracket
* t tab
★ ★ ★

* • •

••
*n newli ne
*r carriage return (no line feed)
* f ASCII formfeed
* b backspace
* v vertical tab
*x rubout (octal 177)
*#nnn nnn is 1-3 character octal number

2 . The following are escapes used outside character and
string constants on terminals (such as the 2 74 1) which do
not have on their keyboards some of the characters used by
8. If you use QEDz it is nicer to use the QED escapes for
these characters# so that when you shift to an ASCII ter
minal you can see the characters the way they ought to ap
pear.

$(
$)
$<
$>
$ +
$-
$a
$•

< - left curly brace
> - right curly brace
C - left square bracket
] - right square bracket
I - or-bar
cent-sign) - up-arrow
3 - at-s i gn

- grave accent

(Copyright (c) 1977# University of Waterloo)

Waterloo 56 September 1978

Appendi x 3

B - Binding strengths of operators

Operators are listed from highest to lowest binding
strength; there is no order within groups. Operators of
equal strength bind left to right or right to left as in-
di cat ed.

++--*&-! " U- # ttK (unary) [RL3
>> << [LRJ
& CLR]

CLR]
I CLR]
* / 7. H* Nt (binary) CLR]
+-#-#+ CLR]
== != > < <= >= #== = #> #< #< = # = = #! = #> =
&&

?: [RLJ
= + = -= etc. (all assignment operators) [RLJ

(Copyright (c) 1978/ University of Waterloo)

Appendix C

B - B compiler error messages.

This is a list of diagnostics known to be generated by
the B compiler. There may be others.

In each description/ ”nn" means a line number/ while
"name” is some identifier name. The name of the source file
is usually also given.

Any message not preceded by "warning: " is a fatal er
ror. If there is a fatal error/ neither the loader
random library editor will be called.

nor the

syntax error at line nn [in file <name>J
This is the most common diagnostic and it could mean
almost any kind of error. Most often/ it means a
semicolon is missing or the number of open curly
braces "<" does not match the number of close curly
braces ">"/ in which case the line number will be the
number of the last line in the last file being
processed plus one. This may be due to neglecting to
end a string constant/ character constant or comment.
You also get this message if you use a keyword in an
inappropriate context/ such as an AUTO statement/ if
you neglect to define a manifest/ or if you attempt
to redefine a manifest.

<identifier> undefined in function <name>
An identifier in the named function has not been
referenced by an EXTRN or AUTO statement and has not

September 1978 57 Waterloo

been used as a label. The line number given is the
last line of the function being compiled.

warning: /* inside comment • • •
This is a warning only/ but there will probably be a
syntax error later on# since comments may not be
nested. After reading a '*/*”, the compiler skips all
text until a ”*/" is encountered/’ if there is a com
ment inside a comment, then the compiler will attempt
to compile the remainder of the outside comment.

end of file in comment
This usually indicates that you forgot to end a com
ment with the terminating **/’.

warning: newline in constant not preceded by
The most probable cause is that you forgot to ter
minate a string or character constant with the ap
propriate delimiter. If this is the case, you will
surely get a syntax error later. If you want a
"real" newline inside the constant/ but no warning,
use the escape sequence f*n*. If the constant is a
string constant which is too long to fit on one line,
precede the newline with a * * * J the newline will be
discarded. When the warning is issued, the newline
is kept.

invalid octal constant
An integer beginning with the digit zero, which is
thus assumed to be an octal constant, contains a
character other than the digits zero through seven.

character constant too long
A character constant may not contain more than four
characters/ although each character may be a two
character escape sequence.

bed constant too long
A BCD constant contains more than six characters,

exponent too large in constant
The exponent of a floating point constant is too
large or too small to represent in the hardware.

attempt zero division
In evaluating the constant part of an expression/ the
right operand of a division or remainder operator was
found to be the constant zero.

invalid & prefix
The operator has been used in an invalid context,
such as "&x = y”.

warning: found ++r-value
warning: found --r-value

You get this if you say something like "++x++".
invalid $ escape sequence

An escape sequence beginning with is not known to
the compi I er.

invalid unary operator
The compiler discovered you trying to use a binary
operator in a unary manner.

The expression on the left hand side of an assignment

Waterloo - 58 - September 1978

operator does not have an lvalue.
invalid ++
invalid - -

The expression operated upon by the '++' or
operator does not have an lvalue.

invalid label
A name used as a label has previously been declared
as EXTRN or AUTO in the current function.

invalid break
The compiler found a BREAK statement which was not
inside a FOR/ WHILE/ DO-WHILE/ REPEAT or SWITCH
stat emen t.

invalid next
The compiler found a NEXT statement which was not in
side a FOR/ WHILE/ DO-WHILE or REPEAT statement.

invalid constant expression
Will happen if you try to use a string constant in a
constant expression.

invalid operator
This is one of those "cannot happen" messages. If it
does happen/ please submit an error report.

auto array too large
You attempted to declare an auto vector with a dimen
sion greater than 1000 words. It is better to use an
external vector or else GETVEC the space/ since AUTO
variables are allocated on the stack and stack space
is limited.

extrn array too large
This will happen if you declare an external vector
like "xC3.0j;".

invalid case
A CASE label is not inside a SWITCH statement,

invalid default
A DEFAULT label is not inside a SWITCH statement,

default already supplied
More than one DEFAULT label in a SWITCH statement,

invalid case operator
The only bound operators permitted in a CASE are </
>/ >=/ and <=.

^filename ignored- too many open files
This usually happens when you include a file which
includes itself.

bad input character: <ddd> (octal)
A character encountered in the input stream outside
of a string or character constant has no meaning for
the compiler. This might be a backspace or some con
trol character typed in by mistake. Since it may be
non-printing/ the value of the offending character is
displayed in octal.

rewrite this expression
A subscripting expression is too involved for the
code generator to handle. Try breaking up the expres
sion into more than one statement.

manifest nesting too deep
This will occur when you have manifest constants
whose evaluation involves other manifest constants.

September 1978 59 Waterloo

This will occur if you have a series of manifest
definitions# each of which is defined in terms of the
previous manifest. This is ok in GMAP# but not in B.

warning: program size > 32k
One of the object decks generated will require more
than 32K words to load. You may get this warning if
you declare several very large external vectors.
However/ it might also mean the loader will be
aborted by TSS due to ’’not enough core to run job”,

expression too complex
no tree space
no stack space

An expression is too complex for the compiler to
evaluate. Try simplifying it by breaking it up into
two or more expressions.

The constant <ddd> occurs in two case labels
The same constant appears in more than one CASE label
in a SWITCH statement. The value of the offending
constant is printed in decimal.

the upper range <ddd> overlaps the lower range <ddd>
The compiler has detected overlapping bounds inside a
SWITCH statement. The values of the bounds are
displayed in decimal.

The constant <ddd> is in the range <ddd>::<ddd>
The compiler has detected a CASE constant which is in
the range of a range case or relational case# in a
SWITCH statement. The numbers are given in decimal.
If something conflicts with a relational case# then
the bounds generated for the relation are shown. For
example# the bounds for ’’case > 0:” would be
”1::34359738367”.

Initializers nested too deeply
An external declaration has initializers in braces
nested to a depth greater than seven,

external redefined
auto variable redefined
label redef i ned
auto array name redefined

The compiler has detected an attempt to redefine a
symbol which has already been defined to the current
function body.

no space for symdef
There are too many external definitions^ try dividing
them into two groups by either compiling them
seperately or placing a function in between. This er
ror is almost never encountered.

no space for symr e f
There are too many external references in a function
definition; try simplification. This error is almost
never encountered,

warning: #<text> ignored
A line beginning with a •#•# which is taken to be a
compiler directive# does not contain a recognizable
directive. The line is ignored.

TSS loader warning messages:

Water Ioo 60 S ept ember 1978

<w> name undefined
This is a loader message/ which indicates that an
external variable referenced by one of your func
tions/ or a library function/ remains undefined after
all libraries have been searched. If your program
references the named external it will abort with a
MME fault in TSS/ or with a USER’S L1 MME GE80RT in
batch.

<w> name loaded previously
The loader has discovered a function or external with
the same name as one already loaded. The most
probable reason is that you have two or more dif
ferent names which/ when truncated to six characters
end up being the same. The loader ignores all but the
first. Make sure all your externals and function
names are unique in their first six characters.

(Copy right (c) 1978/ University of Waterloo)

Append i x D

Routines in the B library are listed below/
with a brief explanation. For greater detail/ type

explain b lib <name>
where <name> is the routine name.

.abbr v
• bof f
. bset
• prof i le
.read
.write
abort
abs
a c c . f i I e
a c c I i b
addve c
aft.name
al locate
any
apply
ar s
a s c be d
attach
back.d
bac kspace
bedadd
be das c
bedsub
b i n b c d
c.read
c.write
calif

check command abbreviation for .bset
define a debugger breakpoint
breaks up a command line into useful chunks
generate execution profile of a B program
change the current reading unit
change the current writing unit
abort job/ producing dump and returning status
absolute value of an integer
access file
access system libraries
add more space to a vector obtained from getvec
get aftname/fiI ecode for a unit
get storage/ which may be automaticaI I y released
check if a character appears in a string
apply callers args to another call
arithmetic right shift
convert an ascii string to a bed vector
associate file name with file code for DRL TASK
pass a backdoor file to sysout from tss
backspace an output unit by one character
add two bed numbers
convert characters from bed to ascii
subtract two bed numbers
convert a binary number to bed
make unit a reading unit
make unit a writing unit
call Fortran program from B routine

September 1978 61 Waterloo

c h a r b

chcksm
close
cmpc
c m p I o g
cmpvec
column
compare
c o n c a t
copy
c o p y c h
date
da t e j u I
da t es i
da t e v
daymen
d i v
d r I . d r I
dr I j s t s
d t oa
dump
dumps
e b c a s c
eo f
equal
error
exit
ex tern
f i Ides
flush
fp i nput
f po
f s f i I e
ge t ar g
ge t b i n
ge t c
ge t c h a r
ge t da t e
get line
ge t ma t r i x
get med i a
ge t numb
ge t r c p
ge t r e c
ge t s t r
ge 11 ape
get umc
g e t v e c
gn umb er
go t os s
gt b
hist

call Fortran floating point function from B
obsolete - use scaf

extract a character from an ascii string
extract a bed character from a bed string
create a charp character pointer
compute a checksum.
close currently open file
compare two strings via EIS CMPC instruction
compare two values logically (unsigned)
compare one B vector to another
find the current output column
compare two B strings
concatenate a series of strings
copy contents of one vector into another
replace a substring by another substring
return current date in ascii
obsolete - use datesi
convert date in string to standard integer form
return date in vector of integers
convert date to dd/mmm/yy format
integer divide with uniform direction of truncation
execute a given TSS drl (system call)
obtain status of batch job
obsolete - use print
dump vector in multiple formats
dump an array
convert string to ascii from ebcdic
test or write end*of*fiIe
compare two strings for equality
print error message# then exit
end job and return status
possibly useful externals in the library
get file desc ri ptor
write out contents of current output buffer
convert string to floating point binary
obsolete - use print
space input file forward one file
extract (command) arguments from a string
read vector of binary data from sequential file
read a character# temporarily switching units
get a character from an input stream
put date into the form mm/dd/yy
read a line# with terminating ”*n"# into a string
dynamically allocate a matrix
find out the media code of a file
read a number from the current input unit
return pointer to next logical record
return next logical record# with rew
read a line# Less its trailing ”*n”# into a string
ask for a tape from geos
get userid of current user
dynamically allocate a vector
extract number from string
execute a TSS command# never to return
execute a gtb instruction
overview of the histogram package

Water loo 62 September 1978

histdestroy - free space used by a histogram
h i s t i n i t
histogram
hi s t p r i n t
i n c r un
i nt request
i n t s s
i o e r r o r s
j u I da t e

Ic h ar b
length
lowercase
I i n u m b

main
max
min
mme•mme
mo ve I r
mover I
na rgs
nobr ks
nu 11s t r i ng
numarg
open
overt low
p as us t
peek
pnmat ch

print f
prompt
put asc
pu t be d
p u t b i n

p u t c h a r
pu t numb
putoc t
put rec
p u t s t r
a s o r t
ran.rd
rem
reread
rot ate
rand
r d . r a n
read
readf
r e I mem
remo v

- allocate and initialize a histogram
- add a point to a histogram
* print accumulated histogram
- tell if a user is in a CRIIN and not in $*$TALK
- handle breaks from the terminal
- tells whether running in tss or not
- obsolete * use open
- obsolete - use sidate
- replace a character in an ascii string
- replace a bed character in a bed string
- return the length of a string
- turn alphabetics in a string to lower case
- return number of current line of a file
- replace a character using a charp pointer
- entry to program from the operating system
* maximum value of two integers
- minimum value of two integers
- execute a given batch mme (system call)
- perform EIS MLR instruction
* perform EIS MRL instruction
- return number of arguments to a function
- count times break key hit
* check for null string
- extract numeric argument from a character string
* open string or file for read# write or append
- test and reset overflow indicator
- execute a tss drl pasust
- peek at memory
* perform simple pattern match (eg# on pathnames)
* write (with format) to string
- formatted output
- printf only if current reading unit is a terminal
- direct ascii characters to output stream
* direct bed characters to output stream
- write vector of binary data to sequential file
* write a character# temporarily switching units
” send a character to the writing unit
- output decimal numbers
- output octal numbers
- output# unprocessed# a record to a sequential file
~ output a string using eis
- obsolete - use shellsort
* obsolete - use read
- remainder of division as per function div
* back up to start of input line
- rotate a word n bits to the left or right
- generate pseudo-random numbers
- obsolete - use read
- disc i/o routines (unit oriented)
- formatted input
- release all free memory
* remove file from AFT given pathname
* non-local goto
- remove a file from the aft (used with acc^fil)
- rewind an open file

September 1978 63 Waterloo

rscr - read system controller clock
rstpsw - turn off switch word bits by Exclusive-or
sbar - find size of allocated memory
scaf - parse pathname into Filsys format
scan - extract delimited substring of a string
scm - perform EIS SCM or SCMR instruction
setmedia - change media code of output file
setpsw - set switch word by ORing
shellsort - a Shell sort
sidate - standard integer date to string
sleep - wait for specified interval
smc.hash - calculate smc "hash” bucket for a given user ID
star - pick up a character using a charp pointer
strings - working with strings via i/o calls
strip - start stripping line numbers from input
swapdescr - change program descriptors
system - execute a TSS command
t2741 - check if terminal is a 2741
tabset - establish settings for tab expansion in i/o package
tally - create tally to bed string
tallyb - create tally to ascii string
tape - describes tape i/o support for batch b programs
task - submit a batch job via DRL TASK
tick - return epu time for current user
time - return time of day# or convert a time in pulses
tr9to9 - translate any 9-bit character code into another
trace - how to invoke the call/return trace
trim - remove trailing blanks from a string
trtest ~ perform an EIS translate and test
ttyn - determine if I/O is to the terminal
ungetc - put a character back to a reading unit
uppercase - convert lower case alphabetics to upper case
vector - getvec and initialize a vector
wdleng - return word length in bits
xlate - perform EIS move with translate
zero - initialise a B vector to some value

Water loo 64 September 1978

